On the coplanar eccentric non-restricted co-orbital dynamics

  • A. Leleu
  • P. Robutel
  • A. C. M. Correia
Original Article


We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the \(L_4\) and \(L_5\) eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.


Trojans Co-orbitals Lagrange Planetary problem Three-body problem High eccentricity Mean-motion resonance 



The authors acknowledge financial support from the Observatoire de Paris Scientific Council, CIDMA strategic project UID/MAT/04106/2013, ENGAGE SKA POCI-01- 0145-FEDER-022217 (funded by COMPETE 2020 and FCT, Portugal), and the Marie Curie Actions of the European Commission (FP7-COFUND). Parts of this work have been carried out within the frame of the National Centre for Competence in Research PlanetS supported by the SNSF. This work was granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (Reference ANR-10-EQPX-29-01) of the programme Investissements dAvenir supervised by the Agence Nationale pour la Recherche. The authors thank the referees for useful suggestions that greatly improved the description of the results.


  1. Batygin, K., Morbidelli, A.: Analytical treatment of planetary resonances. Astron. Astrophys. 556, A28 (2013)ADSCrossRefGoogle Scholar
  2. Beaugé, C., Roig, F.: A semianalytical model for the motion of the trojan asteroids: proper elements and families. Icarus 153, 391–415 (2001)ADSCrossRefGoogle Scholar
  3. Charlier, C.V.L.: Über den Planeten 1906 TG. Astron. Nachr. 171, 213 (1906)ADSCrossRefGoogle Scholar
  4. Delisle, J.-B., Laskar, J., Correia, A.C.M.: Resonance breaking due to dissipation in planar planetary systems. Astron. Astrophys. 566, A137 (2014)CrossRefGoogle Scholar
  5. Delisle, J.-B., Laskar, J., Correia, A.C.M., Boué, G.: Dissipation in planar resonant planetary systems. Astron. Astrophys. 546, A71 (2012)CrossRefGoogle Scholar
  6. Dermott, S.F., Murray, C.D.: The dynamics of tadpole and horseshoe orbits. I - Theory. Icarus 48, 1–11 (1981)ADSCrossRefGoogle Scholar
  7. Érdi, B.: An asymptotic solution for the trojan case of the plane elliptic restricted problem of three bodies. Celest. Mech. 15, 367–383 (1977)ADSCrossRefzbMATHGoogle Scholar
  8. Érdi, B., Nagy, I., Sándor, Z., Süli, Á., Fröhlich, G.: Secondary resonances of co-orbital motions. MNRAS 381, 33–40 (2007)ADSCrossRefGoogle Scholar
  9. Ford, E.B., Gaudi, B.S.: Observational constraints on Trojans of transiting extrasolar planets. Astrophys. J. Lett. 652, 137–140 (2006)ADSCrossRefGoogle Scholar
  10. Garfinkel, B.: Theory of the Trojan asteroids. I. Astron. J. 82, 368–379 (1977)ADSCrossRefGoogle Scholar
  11. Gascheau, G.: Examen d’une classe d’équations différentielles et application à un cas particulier du problème des trois corps. C. R. Acad. Sci. Paris 16(7), 393–394 (1843)Google Scholar
  12. Gastineau, M., Laskar, J.: Trip: a computer algebra system dedicated to celestial mechanics and perturbation series. ACM Commun. Comput. Algebra 44(3/4), 194–197 (2011)zbMATHGoogle Scholar
  13. Giuppone, C.A., Beaugé, C., Michtchenko, T.A., Ferraz-Mello, S.: Dynamics of two planets in co-orbital motion. MNRAS 407, 390–398 (2010)ADSCrossRefGoogle Scholar
  14. Giuppone, C.A., Benitez-Llambay, P., Beaugé, C.: Origin and detectability of co-orbital planets from radial velocity data. MNRAS (2012)Google Scholar
  15. Hadjidemetriou, J.D., Psychoyos, D., Voyatzis, G.: The 1/1 resonance in extrasolar planetary systems. Celest. Mech. Dyn. Astron. 104, 23–38 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. Hadjidemetriou, J.D., Voyatzis, G.: The 1/1 resonance in extrasolar systems. Migration from planetary to satellite orbits. Celest. Mech. Dyn. Astron. 111, 179–199 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. Henrard, J., Caranicolas, N.D.: Motion near the 3/1 resonance of the planar elliptic restricted three body problem. Celest. Mech. Dyn. Astron. 47, 99–121 (1989)ADSMathSciNetCrossRefGoogle Scholar
  18. Laskar, J.: The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zone. Icarus 88, 266–291 (1990)ADSCrossRefGoogle Scholar
  19. Laskar, J., Robutel, P.: Stability of the planetary three-body problem I: expansion of the planetary hamiltonian. Celest. Mech. Dyn. Astron. 62, 193–217 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. Laskar, J., Robutel, P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. Leleu, A.: Dynamics of co-orbital exoplanets. PhD thesis (2016)Google Scholar
  22. Leleu, A., Robutel, P., Correia, A.C.M.: Detectability of quasi-circular co-orbital planets: application to the radial velocity technique. Astron. Astrophys. 581, A128 (2015)ADSCrossRefGoogle Scholar
  23. Leleu, A., Robutel, P., Correia, A.C.M., Lillo-Box, J.: Detection of co-orbital planets by combining transit and radial-velocity measurements. Astron. Astrophys. 599, L7 (2017)ADSCrossRefGoogle Scholar
  24. Liouville, J.: Sur un cas particulier du problème des trois corps. C. R. Acad. Sci. Paris 14, 503–506 (1842)Google Scholar
  25. Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the n-Body Problem. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  26. Michtchenko, T.A., Ferraz-Mello, S., Beaugé, C.: Modeling the 3-d secular planetary three-body problem. Icarus 181, 555–571 (2006)ADSCrossRefzbMATHGoogle Scholar
  27. Mikkola, S., Innanen, K., Wiegert, P., Connors, M., Brasser, R.: Stability limits for the quasi-satellite orbit. Mon. Not. R. Astron. Soc 369, 15–24 (2006)ADSCrossRefGoogle Scholar
  28. Morais, M.H.M.: A secular theory for Trojan-type motion. Astron. Astrophys. 350, 318–326 (1999)ADSGoogle Scholar
  29. Morais, M.H.M.: Hamiltonian formulation of the secular theory for Trojan-type motion. Astron. Astrophys. 369, 677–689 (2001)ADSCrossRefzbMATHGoogle Scholar
  30. Morais, M.H.M., Namouni, F.: Retrograde resonance in the planar three-body problem. Celest. Mech. Dyn. Astron. 117, 405–421 (2013)ADSMathSciNetCrossRefGoogle Scholar
  31. Morbidelli, A.: Modern Celestial Mechanics : Aspects of Solar System Dynamics. Taylor & Francis, London (2002). ISBN 0415279399Google Scholar
  32. Namouni, F.: Secular interactions of coorbiting objects. Icarus 137, 293–314 (1999)ADSCrossRefGoogle Scholar
  33. Nauenberg, M.: Stability and eccentricity for two planets in a 1:1 resonance, and their possible occurrence in extrasolar planetary systems. Astron. J. 124, 2332–2338 (2002)ADSCrossRefGoogle Scholar
  34. Nesvorný, D., Thomas, F., Ferraz-Mello, S., Morbidelli, A.: A perturbative treatment of the co-orbital motion. Celest. Mech. Dyn. Astron. 82(4), 323–361 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. Páez, R.I., Efthymiopoulos, C.: Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems. Celest. Mech. Dyn. Astron. 121, 139–170 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. Pousse, A., Robutel, P., Vienne, A.: On the co-orbital motion in the planar restricted three-body problem: the quasi-satellite motion revisited. Celest. Mech. Dyn. Astron. (2017)Google Scholar
  37. Roberts, G.: Linear stability of the elliptic Lagrangian triangle solutions in the three-body problem. JDIFE 182, 191–218 (2002)MathSciNetzbMATHGoogle Scholar
  38. Robutel, P., Gabern, F.: The resonant structure of Jupiter’s Trojan asteroids I: long-term stability and diffusion. MNRAS 372, 1463–1482 (2006)ADSCrossRefGoogle Scholar
  39. Robutel, P., Laskar, J.: Frequency map and global dynamics in the solar system I: short period dynamics of massless particles. Icarus 152, 4–28 (2001)ADSCrossRefGoogle Scholar
  40. Robutel, P., Niederman, L., Pousse, A.: Rigorous treatment of the averaging process for co-orbital motions in the planetary problem. Comput. Appl. Math. 35(3), 675–699 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  41. Robutel, P., Pousse, A.: On the co-orbital motion of two planets in quasi-circular orbits. Celest. Mech. Dyn. Astron. 117, 17–40 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. Sidorenko, V., Artemiev, A., Neishtadt, A., Zelenyi, L.: Quasi-satellite orbits in general context of dynamics at 1:1 mean motion resonance: a perturbative treatment (2014)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Institute, Space Research and Planetary Sciences, Center for Space and Habitability - NCCR PlanetSUniversity of BernBernSwitzerland
  2. 2.IMCCE, Observatoire de Paris, UPMC, CNRS UMR8028ParisFrance
  3. 3.Departemento de Fìsica, I3NUniversidade de AvieroAveiroPortugal

Personalised recommendations