Skip to main content
Log in

The rectilinear three-body problem as a basis for studying highly eccentric systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity \(e'=1\), but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003–1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter \(\mu =0.5\) (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke’s computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to \(\mu \) and \(e'<1\). Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. We note that the orbital elements for the rectilinear model are computed relatively to the barycenter of the primaries.

References

  • Antoniadou, K.I., Voyatzis, G.: Orbital stability of coplanar two-planet exosystems with high eccentricities. Mon. Not. R. Astron. Soc. 461, 3822–3834 (2016)

    Article  ADS  Google Scholar 

  • Barnes, R., Greenberg, R.: Stability limits in extrasolar planetary systems. Astrophys. J. 647, L163–L166 (2006). https://doi.org/10.1086/507521

    Article  ADS  Google Scholar 

  • Broucke, R.: Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J. 7, 1003–1009 (1969)

    Article  ADS  MATH  Google Scholar 

  • Contopoulos, G., Harsoula, M.: Chaotic spiral galaxies. Celest. Mech. Dyn. Astron. 113, 81–94 (2012). https://doi.org/10.1007/s10569-011-9378-7

    Article  ADS  Google Scholar 

  • Danby, J.M.A.: The solution of Kepler’s equation. Celest. Mech. 40, 303–312 (1987)

    Article  ADS  MATH  Google Scholar 

  • de Assis, S.C., Terra, M.O.: Escape dynamics and fractal basin boundaries in the planar Earth–Moon system. Celest. Mech. Dyn. Astron. 120, 105–130 (2014). https://doi.org/10.1007/s10569-014-9567-2

    Article  ADS  MathSciNet  Google Scholar 

  • Dumusque, C., Lovis, D., Ségransan, M., Mayor, S., Udry, W., Benz, F., Bouchy, G., Lo Curto, C., Mordasini, F., Pepe, D., Queloz, N., Santos, C., Naef, D.: The HARPS search for southern extra-solar planets. XXX. Planetary systems around stars with solar-like magnetic cycles and short-term activity variation. Astron. Astrophys. 535, A55 (2011)

    Article  ADS  Google Scholar 

  • Froeschlé, C., Lega, E., Gonczi, R.: Fast lyapunov indicators. application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41–62 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hadjidemetriou, J.D.: Symmetric and asymmetric librations in extrasolar planetary systems: a global view. Celest. Mech. Dyn. Astron. 95, 225–244 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hadjidemetriou, J.D., Christides, T.: Families of periodic orbits in the planar three-body problem. Celest. Mech. 12, 175–187 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Henon, M.: Generating Families in the Restricted Three-Body Problem. Springer, Berlin (1997)

    MATH  Google Scholar 

  • Ichtiaroglou, S., Katopodis, K., Michalodimitrakis, M.: On the continuation of periodic orbits in the three-body problem. Astron. Astrophys. 70, 531 (1978)

    ADS  MathSciNet  MATH  Google Scholar 

  • Kovács, T., Érdi, B.: Transient chaos in the Sitnikov problem. Celest. Mech. Dyn. Astron. 105, 289–304 (2009). https://doi.org/10.1007/s10569-009-9227-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Páez, R.I., Efthymiopoulos, C.: Trojan resonant dynamics, stability and chaotic diffusion, for parameters relevant to exoplanetary systems. Celest. Mech. Dyn. Astron. 121, 139–170 (2015). https://doi.org/10.1007/s10569-014-9591-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pichardo, B., Sparke, L.S., Aguilar, L.A.: Geometrical and physical properties of circumbinary discs in eccentric stellar binaries. Mon. Not. R. Astron. Soc. 391, 815–824 (2008)

    Article  ADS  Google Scholar 

  • Pilat-Lohinger, E., Dvorak, R.: Stability of S-type orbits in binaries. Celest. Mech. Dyn. Astron. 82, 143–153 (2002)

    Article  ADS  MATH  Google Scholar 

  • Schneider, J., Dedieu, C., Le Sidaner, P., Savalle, R., Zolotukhin, I.: Defining and cataloging exoplanets: the exoplanet.eu database. Astron. Astrophys. 532, A79 (2011)

    Article  Google Scholar 

  • Schubart, J.: Numerische aufsuchung periodischer Losungen im dreikorper-problem. Astron. Nachr. 283, 17–22 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Schubart, J.: Libration of arguments of circumbinary-planet orbits at resonance. Celest. Mech. Dyn. Astron. (2017). https://doi.org/10.1007/s10569-017-9752-1

    MathSciNet  Google Scholar 

  • Voyatzis, G.: Periodic orbits of planets in binary systems. In: Maindl, T.A., Varvoglis, H., Dvorak, R. (eds.) Proccedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems (2017)

  • Voyatzis, G., Kotoulas, T., Hadjidemetriou, J.D.: On the 2/1 resonant planetary dynamics–periodic orbits and dynamical stability. Mon. Not. R. Astron. Soc. 395, 2147–2156 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Voyatzis.

Additional information

This article is part of the topical collection on Close Approaches and Collisions in Planetary Systems.

Guest Editors: Rudolf Dvorak, Christoph Lhotka and Alessandra Celletti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voyatzis, G., Tsiganis, K. & Gaitanas, M. The rectilinear three-body problem as a basis for studying highly eccentric systems. Celest Mech Dyn Astr 130, 3 (2018). https://doi.org/10.1007/s10569-017-9796-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-017-9796-2

Keywords

Navigation