Steady state obliquity of a rigid body in the spin–orbit resonant problem: application to Mercury

Abstract

We investigate the stable Cassini state 1 in the p : q spin–orbit resonant problem. Our study includes the effect of the gravitational potential up to degree and order 4 and p : q spin–orbit resonances with \(p,q\le 8\) and \(p\ge q\). We derive new formulae that link the gravitational field coefficients with its secular orbital elements and its rotational parameters. The formulae can be used to predict the orientation of the spin axis and necessary angular momentum at exact resonance. We also develop a simple pendulum model to approximate the dynamics close to resonance and make use of it to predict the libration periods and widths of the oscillatory regime of motions in phase space. Our analytical results are based on averaging theory that we also confirm by means of numerical simulations of the exact dynamical equations. Our results are applied to a possible rotational history of Mercury.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Baland, R.M., Yseboodt, M., Rivoldini, A., Van Hoolst, T.: Obliquity of Mercury: influence of the precession of the pericenter and of tides. Icarus 291, 136–159 (2017). doi:10.1016/j.icarus.2017.03.020. arXiv:1612.06564

    ADS  Article  Google Scholar 

  2. Cassini, G.D.: Traité de L’origine e de Progrés de L’Astronomie. Observatoire de Paris, Paris (1693)

    Google Scholar 

  3. Celletti, A.: Analysis of resonances in the spin-orbit problem in celestial mechanics: higher order resonances and some numerical experiments (part II). Z. Angew. Math. Phys. ZAMP 41(4), 453–479 (1990). doi:10.1007/BF00945951

    Article  MATH  MathSciNet  Google Scholar 

  4. Celletti, A., Chierchia, L.: Measures of basins of attraction in spin-orbit dynamics. Celest. Mech. Dyn. Astron. 101, 159–170 (2008). doi:10.1007/s10569-008-9142-9

    ADS  Article  MATH  MathSciNet  Google Scholar 

  5. Celletti, A., Lhotka, C.: Transient times, resonances and drifts of attractors in dissipative rotational dynamics. Commun. Nonlinear Sci. Numer. Simul. 19, 3399–3411 (2014). doi:10.1016/j.cnsns.2014.01.013. arXiv:1401.4378

    ADS  Article  MathSciNet  Google Scholar 

  6. Correia, A.C.M.: Stellar and planetary Cassini states. Astron. Astrophys. 582, A69 (2015). doi:10.1051/0004-6361/201525939

    ADS  Article  Google Scholar 

  7. Correia, A.C.M., Laskar, J.: Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature 429, 848–850 (2004). doi:10.1038/nature02609

    ADS  Article  Google Scholar 

  8. Correia, A.C.M., Laskar, J.: Mercury’s capture into the 3/2 spin-orbit resonance including the effect of core-mantle friction. Icarus 201, 1–11 (2009). doi:10.1016/j.icarus.2008.12.034. arXiv:0901.1843

    ADS  Article  Google Scholar 

  9. D’Hoedt, S., Lemaître, A.: Planetary long periodic terms in Mercury’s rotation: a two dimensional adiabatic approach. Celest. Mech. Dyn. Astron. 101, 127–139 (2008). doi:10.1007/s10569-007-9115-4

    Article  MATH  MathSciNet  Google Scholar 

  10. Dvorak, R., Lhotka, C.: Celestial Dynamics: Chaoticity and Dynamics of Celestial Systems. Wiley. https://books.google.at/books?id=CWOoAAAAQBAJ (2013)

  11. Gkolias, I., Celletti, A., Efthymiopoulos, C., Pucacco, G.: The theory of secondary resonances in the spin-orbit problem. MNRAS 459, 1327–1339 (2016). doi:10.1093/mnras/stw752. arXiv:1603.07760

    ADS  Article  Google Scholar 

  12. Henrard, J., Lemaitre, A.: The untangling transformation. Astron. J. 130(5), 2415 (2005)

    ADS  Article  Google Scholar 

  13. Knibbe, J.S., van Westrenen, W.: On Mercury’s past rotation, in light of its large craters. Icarus 281, 1–18 (2017). doi:10.1016/j.icarus.2016.08.036

    ADS  Article  Google Scholar 

  14. Laskar, J., Robutel, P.: The chaotic obliquity of the planets. Nature 361, 608–612 (1993)

    ADS  Article  Google Scholar 

  15. Lhotka, C.: A symplectic mapping for the synchronous spin-orbit problem. Celest. Mech. Dyn. Astron. 115, 405–426 (2013). doi:10.1007/s10569-012-9464-5

    ADS  Article  MATH  MathSciNet  Google Scholar 

  16. Margot, J.L., Peale, S.J., Jurgens, R.F., Slade, M.A., Holin, I.V.: Large longitude libration of Mercury reveals a molten core. Science 316, 710 (2007). doi:10.1126/science.1140514

    ADS  Article  Google Scholar 

  17. Matsuyama, I., Nimmo, F.: Gravity and tectonic patterns of Mercury: effect of tidal deformation, spin-orbit resonance, nonzero eccentricity, despinning, and reorientation. J. Geophys. Res. (Planets) 114(E01), 010 (2009)

    Google Scholar 

  18. Mazarico, E., Genova, A., Goossens, S., Lemoine, F.G., Neumann, G.A., Zuber, M.T., et al.: The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit. J. Geophys. Res. (Planets) 119, 2417–2436 (2014). doi:10.1002/2014JE004675

    ADS  Article  Google Scholar 

  19. Noyelles, B., Lhotka, C.: The influence of orbital dynamics, shape and tides on the obliquity of Mercury. Adv. Space Res. 52, 2085–2101 (2013). doi:10.1016/j.asr.2013.09.024. arXiv:1211.7027

    ADS  Article  Google Scholar 

  20. Noyelles, B., Frouard, J., Makarov, V.V., Efroimsky, M.: Spin-orbit evolution of Mercury revisited. Icarus 241, 26–44 (2014). doi:10.1016/j.icarus.2014.05.045. arXiv:1307.0136

    ADS  Article  Google Scholar 

  21. Peale, S.J.: Does Mercury have a molten core. Nature 262, 765 (1976). doi:10.1038/262765a0

    ADS  Article  Google Scholar 

  22. Peale, S.J., Boss, A.P.: A spin-orbit constraint on the viscosity of a mercurian liquid core. J. Geophys. Res. 82(5), 743–749 (1977)

    ADS  Article  Google Scholar 

  23. Peale, S.J., Margot, J.L., Hauck, S.A., Solomon, S.C.: Effect of core-mantle and tidal torques on Mercury’s spin axis orientation. Icarus 231, 206–220 (2014). doi:10.1016/j.icarus.2013.12.007. arXiv:1401.4131

    ADS  Article  Google Scholar 

  24. Peale, S.J., Margot, J.L., Hauck, S.A., Solomon, S.C.: Consequences of a solid inner core on Mercury’s spin configuration. Icarus 264, 443–455 (2016). doi:10.1016/j.icarus.2015.09.024

    ADS  Article  Google Scholar 

  25. Pettengill, G.H., Dyce, R.B.: A radar determination of the rotation of the planet Mercury. Nature 206, 1240 (1965)

    ADS  Article  Google Scholar 

  26. Sansottera, M., Lhotka, C., Lemaître, A.: Effective stability around the Cassini state in the spin-orbit problem. Celest. Mech. Dyn. Astron. 119, 75–89 (2014). doi:10.1007/s10569-014-9547-6. arXiv:1510.06521

    ADS  Article  MATH  MathSciNet  Google Scholar 

  27. Sansottera, M., Lhotka, C., Lemaître, A.: Effective resonant stability of Mercury. MNRAS 452, 4145–4152 (2015). doi:10.1093/mnras/stv1429. arXiv:1510.06543

    ADS  Article  Google Scholar 

  28. Scheeres, D.J.: Orbital Motion in Strongly Perturbed Environments. Springer, New York (2012)

    Book  Google Scholar 

  29. Smith, D.E., Zuber, M.T., Phillips, R.J., Solomon, S.C., Hauck, S.A., Lemoine, F.G., et al.: Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214 (2012). doi:10.1126/science.1218809

    ADS  Article  Google Scholar 

  30. Stark, A., Oberst, J., Hussmann, H.: Mercury’s resonant rotation from secular orbital elements. Celest. Mech. Dyn. Astron. 123, 263–277 (2015). doi:10.1007/s10569-015-9633-4. arXiv:1506.00008

    ADS  Article  MathSciNet  Google Scholar 

  31. Van Hoolst, T., Jacobs, C.: Mercury’s tides and interior structure. J. Geophys. Res. (Planets) 108, 5121 (2003). doi:10.1029/2003JE002126

    ADS  Article  Google Scholar 

  32. Van Hoolst, T., Sohl, F., Holin, I., Verhoeven, O., Dehant, V., Spohn, T.: Mercury’s interior structure, rotation, and tides. Space Sci. Rev. 132, 203–227 (2007). doi:10.1007/s11214-007-9202-6

    ADS  Article  Google Scholar 

  33. Wieczorek, M.A., Correia, A.C.M., Le Feuvre, M., Laskar, J., Rambaux, N.: Mercury’s spin-orbit resonance explained by initial retrograde and subsequent synchronous rotation. Nat. Geosci. 5, 18–21 (2012). doi:10.1038/ngeo1350. arXiv:1112.2384

    ADS  Article  Google Scholar 

  34. Yseboodt, M., Rivoldini, A., Van Hoolst, T., Dumberry, M.: Influence of an inner core on the long-period forced librations of Mercury. Icarus 226, 41–51 (2013). doi:10.1016/j.icarus.2013.05.011. arXiv:1305.4764

    ADS  Article  Google Scholar 

Download references

Acknowledgements

I thank the Namur Center for Complex Systems (NAXYS) for fruitful discussions during my research stay in Namur, i.e., A. Lemaître and B. Noyelles who introduced me into the scientific subject. I also thank the reviewers for their suggestions that greatly improved the readability of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christoph Lhotka.

Appendices

A Expressions

The expressions for A[k], \(s_{k,j}\) defined in (17), (18) are summarized in Tables 3 and 4, respectively. Only terms that have been used in this study are shown. Expressions not appearing in the respective tables are assumed to be zero. The complete list of terms can be found in the electronic supplement material to be accessed on https://l-sgn.org/cmda-2017/.

Table 3 Expressions in (17), (18) for the 3 : 2 and 1 : 1 spin–orbit resonances
Table 4 Expressions in (17), (18) for the 3 : 1, 5 : 2, 2 : 1 spin–orbit resonances

B Rotation matrices

The rotation matrices, used in the present paper, are defined following the convention:

$$\begin{aligned} R_1=\left( \begin{array}{lll} 1 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad c &{}\quad -s \\ 0 &{}\quad s &{}\quad c \\ \end{array} \right) \ , \ R_2=\left( \begin{array}{lll} c &{}\quad 0 &{}\quad s \\ 0 &{}\quad 1 &{}\quad 0 \\ -s &{}\quad 0 &{}\quad c \\ \end{array} \right) \ , \ R_3=\left( \begin{array}{lll} c &{}\quad -s &{}\quad 0 \\ s &{}\quad c &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 1 \\ \end{array} \right) \ , \end{aligned}$$

where \(R_j=R_j(\psi )\) with \(j=1,2,3\) and where we used the abbreviations \(c=\cos (\psi )\) and \(s=\sin (\psi )\).

C Table of notations

See Table 5.

Table 5 Table of notations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lhotka, C. Steady state obliquity of a rigid body in the spin–orbit resonant problem: application to Mercury. Celest Mech Dyn Astr 129, 397–414 (2017). https://doi.org/10.1007/s10569-017-9787-3

Download citation

Keywords

  • Cassini state
  • Spin–orbit resonances
  • Gravity field
  • Mercury