Skip to main content
Log in

Direct and indirect capture of near-Earth asteroids in the Earth–Moon system

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth–Moon \(\hbox {L}_{1}\) and \(\hbox {L}_{2}\) points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun–Earth–Moon restricted four-body problem until its insertion, with a second impulse, onto the \(\hbox {L}_{2}\) stable manifold in the Earth–Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid’s initial obit to the stable manifold associated with Earth–Moon \(\hbox {L}_{2}\) point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun–Earth circular restricted three-body problem and subsequent transfer to the Earth–Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth–Moon system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Alessi, E.M., Gómez, G., Masdemont, J.J.: Leaving the Moon by means of invariant manifolds of libration point orbits. Commun. Nonlinear Sci. Numer. Simul. 14(12), 4153–4167 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Andrews, D.G., Bonner, K., Butterworth, A., Calvert, H., Dagang, B., Dimond, K., Eckenroth, L., Erickson, J., Gilbertson, B., Gompertz, N.: Defining a successful commercial asteroid mining program. Acta Astronaut. 108, 106–118 (2015)

    Article  ADS  Google Scholar 

  • Brophy, J., Culick, F., Friedman, L., Allen, C., Baughman, D., Bellerose, J., Betts, B., Brown, M., Busch, M., Casani, J.: Asteroid Retrieval Feasibility Study. Keck Institute for Space Studies, Califonia Institute of Technology, Jet Propulsion Laboratory (2012a)

  • Brophy, J.R., Friedman, L., Culick, F.: Asteroid retrieval feasibility. In: Aerospace Conference, 2012 IEEE, pp. 1–16. IEEE (2012b)

  • Ceriotti, M., Sanchez, J.P.: Control of asteroid retrieval trajectories to libration point orbits. Acta Astronaut. 126, 342–353 (2016)

    Article  ADS  Google Scholar 

  • Davis, K.E., Anderson, R.L., Scheeres, D.J., Born, G.H.: The use of invariant manifolds for transfers between unstable periodic orbits of different energies. Celest. Mech. Dyn. Astron. 107(4), 471–485 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Davis, K.E., Anderson, R.L., Scheeres, D.J., Born, G.H.: Optimal transfers between unstable periodic orbits using invariant manifolds. Celest. Mech. Dyn. Astron. 109(3), 241–264 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • de Sousa-Silva, P.A., Terra, M.O.: A survey of different classes of Earth-to-Moon trajectories in the patched three-body approach. Acta Astronaut. 123, 340–349 (2016)

    Article  ADS  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  • DeFilippi Jr, G.: Station Keeping at the L4 Libration Point: A Three Dimensional Study. Air Force Institute of Tech Wright–Patterson AFB, OH School of Engineering (1977)

  • Farquhar, R.W., Dunham, D.W., Guo, Y., McAdams, J.V.: Utilization of libration points for human exploration in the Sun–Earth–Moon system and beyond. Acta Astronaut. 55(3), 687–700 (2004)

    Article  ADS  Google Scholar 

  • Folta, D., Woodard, M., Cosgrove, D.: Stationkeeping of the first Earth–Moon libration orbiters: the ARTEMIS mission. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, AAS 11-515, Girdwood, Alaska (2011)

  • Gómez, G.: Dynamics and Mission Design Near Libration Points, Vol I: Fundamentals: The Case of Collinear Libration Points. World Scientific, Singapore (2001)

  • Gómez, G., Jorba, A., Masdemont, J., Simó, C.: Study Refinement of Semi-analytical Halo Orbit Theory. Final Report, ESOC Contract(8625/89) (1991)

  • Gao, Y.: Near-Earth asteroid flyby trajectories from the Sun–Earth L2 for Chang’e-2’s extended flight. Acta. Mech. Sin. 29(1), 123–131 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Hasnain, Z., Lamb, C.A., Ross, S.D.: Capturing near-Earth asteroids around Earth. Acta Astronaut. 81(2), 523–531 (2012)

    Article  ADS  Google Scholar 

  • Howell, K., Pernicka, H.: Numerical determination of Lissajous trajectories in the restricted three-body problem. Celest. Mech. 41(1–4), 107–124 (1987)

    Article  ADS  MATH  Google Scholar 

  • Howell, K.C., Kakoi, M.: Transfers between the Earth–Moon and Sun–Earth systems using manifolds and transit orbits. Acta Astronaut. 59(1), 367–380 (2006)

    Article  ADS  Google Scholar 

  • Hufenbach, B., Laurini, K., Piedboeuf, J., Schade, B., Matsumoto, K., Spiero, F., Lorenzoni, A.: The Global Exploration Roadmap. In: IAC-11-B3.1.8, 62nd International Astronautical Congress, Capetown (2011)

  • Koon, W., Lo, M., Marsden, J., Ross, S.: Low Energy Transfer to the Moon. Celest. Mech. Dyn. Astron. 81(1–2), 63–73 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Shoot the Moon. Spaceflight Mechanics 2000, Vol. 105, Pts I and II, pp. 1017–1030 (2000)

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-body Problem and Space Mission Design. Springer, New York (2011)

    MATH  Google Scholar 

  • Lo, M., Ross, S.: The lunar L1 gateway: portal to the stars and beyond. In: A01-40254, AIAA Space 2001 Conference and Exposition, Albuquerque (2001)

  • Lo, M.W., Parker, J.S.: Unstable resonant orbits near Earth and their applications in planetary missions. In: AIAA 2004-5304, AIAA/AAS Astrodynamics Specialist Conference, vol. 2004-5304. Providence (2004)

  • Mingotti, G., Sánchez, J., McInnes, C.: Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem. Celest. Mech. Dyn. Astron. 120(3), 309–336 (2014a)

    Article  ADS  MathSciNet  Google Scholar 

  • Mingotti, G., Sanchez, J.-P., McInnes, C.: Low energy, low-thrust capture of near Earth objects in the Sun–Earth and Earth–Moon restricted three-body systems. In: AIAA 2014-4301, SPACE Conferences & Exposition. AIAA, Washington (2014b)

  • O’Neill, G.: The colonization of space. Phys. Today 27(9), 32–40 (1974)

    Article  Google Scholar 

  • Olson, J.: Voyages: charting the course for sustainable human space exploration. In: National Aeronautics and Space Administration. NASA (2012)

  • Qi, Y., Xu, S.: Study of lunar gravity assist orbits in the restricted four-body problem. Celest. Mech. Dyn. Astron. 125(3), 333–361 (2016)

  • Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22(3), 241–253 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sánchez, J.P., Yárnoz, D.G.: Asteroid retrieval missions enabled by invariant manifold dynamics. Acta Astronaut. 127, 667–677 (2016)

    Article  ADS  Google Scholar 

  • Salazar, F., de Melo, C., Macau, E., Winter, O.: Three-body problem, its Lagrangian points and how to exploit them using an alternative transfer to L4 and L5. Celest. Mech. Dyn. Astron. 114(1–2), 201–213 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Sanchez, J.-P., Garcia Yarnoz, D., Alessi, E.M., McInnes, C.: Gravitational capture opportunites for asteroid retrieval missions. In: IAC-12.C1.5.13x14763, 63rd International Astronautical Congress, Naples (2012)

  • Sanchez, J.P., McInnes, C.R.: On the ballistic capture of asteroids for resource utilisation. In: IAC-11.C1.4.6, 62nd International Astronautical Congress, CapeTown (2011)

  • Szebehely, V.: Theory of Orbit: The Restricted Problem of Three Bodies. Elsevier, Amsterdam (1967)

    Google Scholar 

  • Topputo, F.: On optimal two-impulse Earth–Moon transfers in a four-body model. Celest. Mech. Dyn. Astron. 117(3), 279–313 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Tronchetti, F.: Private property rights on asteroid resources: assessing the legality of the ASTEROIDS Act. Space Policy 30(4), 193–196 (2014)

    Article  Google Scholar 

  • Wang, Y.M., Qiao, D., Cui, P.Y.: Trajectory design for the transfer from the Lissajous orbit of Sun–Earth system to asteroids. Appl. Mech. Mater. 390, 478–484 (2013)

    Article  Google Scholar 

  • Yárnoz, D.G., Sanchez, J., McInnes, C.: Easily retrievable objects among the NEO population. Celest. Mech. Dyn. Astron. 116(4), 367–388 (2013)

    Article  ADS  Google Scholar 

  • Zhang, Z., Hou, X.: Transfer orbits to the Earth–Moon triangular libration points. Adv. Space Res. 55(12), 2899–2913 (2015)

    Article  ADS  Google Scholar 

  • Zimmer, A.: Investigation of vehicle reusability for human exploration of near-Earth asteroids using Sun–Earth libration point orbits. Acta Astronaut. 90(1), 119–128 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support through the China Scholarship Council (MT) and a Royal Society Wolfson Research Merit Award (CM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghu Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M., McInnes, C. & Ceriotti, M. Direct and indirect capture of near-Earth asteroids in the Earth–Moon system. Celest Mech Dyn Astr 129, 57–88 (2017). https://doi.org/10.1007/s10569-017-9764-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-017-9764-x

Keywords

Navigation