Abstract
In this article, we address the problem of the determination of light pressure upon space structures with a complex geometric shape. For each surface element, we enforce a condition that it can interact with light only from its front side, a condition represented in the form of series of Chebyshev polynomials of the first kind. This Chebyshev expansion enables the use of a series of tensors of increasing rank for determination of the force and moment acting on the sail. We obtain expressions for the determination of light pressure on space structures of complex geometry, taking into account self-shadowing and reflections within the structure. We also give the expressions for tensor parametrization using the specularity coefficient in case of specular -diffuse reflection. For these expressions, we calculated the principal moment and force upon two-sided flat solar sail, spherical and cylindrical bodies, and approximated light pressure upon the proposed space-based observatory Millimetron. The proposed expressions can be used in the ballistic analysis of solar sails and other space objects significantly affected by radiation pressure. Also, these results can be used to analyze the dynamics of large-scale space structures around their center of gravity under light pressure.
Similar content being viewed by others
Change history
26 October 2017
In the paper Nerovny et al. (2017), the commentaries about a convergence of series which represent the absolute value function and corresponding equations contain several mistakes (Sect. 2, from Eqs. (4) to (6)).
References
Alhorn, D., Casas, J., Agasid, E., Adams, C., Laue, G., Kitts, C., et al.: NanoSail-D: the small satellite that could! In: AIAA/USU conference on small satellites. http://digitalcommons.usu.edu/smallsat/2011/all2011/37 (2011)
Bar-Sever, Y., Kuang, D.: New empirically derived solar radiation pressure model for global positioning. In: System satellites, IPN progress report, pp. 42–159. (2004)
Bar-Sever, Y.E., Russ, K.M.: New and improved solar radiation models for GPS satellites based on flight data. Technical report. http://www.dtic.mil/dtic/tr/fulltext/u2/a485820.pdf (1997)
Beekman, G.: IO Yarkovsky and the discovery of ’his’ effect. J. Hist. Astron. 37:71–86. http://adsabs.harvard.edu/full/2006JHA....37...71B (2006)
BMSTU-Sail Space Experiment: Scientific and Technical Advisory Council of the Federal Space Agency for Scientific and Applied Research and Experiment Programs on Manned Space Stations (2014). http://knts.tsniimash.ru/ru/site/Experiment_q.aspx?idE=255. (in Russian)
Bottke, W.F.J., Vokrouhlický, D., Rubincam, D.P., Nesvorný, D.: The Yarkovsky and YORP effects: implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34(1), 157–191 (2006). doi:10.1146/annurev.earth.34.031405.125154
Burns, J.A., Lamy, P.L., Soter, S.: Radiation forces on small particles in the solar system. Icarus 40(1), 1–48 (1979). doi:10.1016/0019-1035(79)90050-2
Burns, J.A., Lamy, P.L., Soter, S.: Radiation forces on small particles in the solar system: a re-consideration. Icarus 232, 263–265 (2014)
Dobrovolskis, A.R.: Inertia of any polyhedron. Icarus 124(2), 698–704 (1996). doi:10.1006/icar.1996.0243
Eaton, J.W., Bateman, D., Hauberg, S., Wehbring, R.: GNU Octave version 4.0.0 manual: a high-level interactive language for numerical computations. http://www.gnu.org/software/octave/doc/interpreter (2015)
Fliegel, H.F., Gallini, T.E.: Solar force modeling of block IIR global positioning system satellites. J. Spacecr. Rockets 33(6), 863–866 (1996). doi:10.2514/3.26851
Fliegel, H.F., Gallini, T.E., Swift, E.R.: Global positioning system radiation force model for geodetic applications. J. Geophys. Res. 97(B1), 559 (1992). doi:10.1029/91JB02564
Forward, R.: Grey solar sails. Am. Inst. Aeronaut. Astronaut. (1989). doi:10.2514/6.1989-2343
Hartmann, W.K., Farinella, P., Vokrouhlický, D., Weidenschilling, S.J., Morbidelli, A., Marzari, F., et al.: Reviewing the Yarkovsky effect: new light on the delivery of stone and iron meteorites from the asteroid belt. Meteorit. Planet. Sci. 34(S4), A161–A167 (1999). doi:10.1111/j.1945-5100.1999.tb01761.x
Howell, J.R., Menguc, M.P., Siegel, R.: Thermal radiation heat transfer, 6th edn. CRC Press, Boca Raton (2015)
Jing, H., ShengPing, G., JunFeng, L.: A curved surface solar radiation pressure force model for solar sail deformation. Sci. China Phys. Mech. Astron. 55(1), 141–155 (2012). doi:10.1007/s11433-011-4575-7
Jing, H., Shengping, G., Junfeng, L., Yufei, L.: The solar radiation pressure force models for a general sail surface shape. In: Macdonald, M. (ed.) Advances in solar sailing, Springer Praxis Books, pp. 469–488. Springer, Heidelberg (2014). doi:10.1007/978-3-642-34907-2_30
Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C., et al.: NanoSail-D: a solar sail demonstration mission. Acta Astronaut. 68(56), 571–575 (2011). doi:10.1016/j.actaastro.2010.02.008
Kardashev, N.S.: Radioastron: a radio telescope much greater than the earth. Exp. Astron. 7(4), 329–343 (1997). doi:10.1023/A:1007937203880
Kardashev, N.S., Andreyanov, V.V., Buyakas, V.I.: Project millimetron. In: Proceedings of PN Lebedev Physical Institute, vol. 228, pp. 112–128. (2000). (in Russian)
Katasev, L.A., Kulikova, N.V.: Physical and mathematical modeling of the formation and evolution of meteor streams. II. Astronomicheskii Vestnik 14:179–183. http://adsabs.harvard.edu/abs/1981AVest..14..225K (1981)
Kawaguchi, J.: An overview of solar sail related activities at JAXA. In: Macdonald, M. (ed.) Advances in solar sailing, Springer Praxis Books, pp. 3–14. Springer, Heidelberg (2014). doi:10.1007/978-3-642-34907-2_1
Kinzel, W.M.: Managing angular momentum accumulation by visit sequencing and visit date: roll selection. Technical report JWST-STScI-000713, SM-12, JWST Science and Operations Center Configuration Management Office (2005)
Kristensen, A.W., Akenine-Möller, T., Jensen, H.W.: Precomputed local radiance transfer for real-time lighting design. In: ACM transactions on graphics (TOG), ACM, vol. 24, pp. 1208–1215. http://dl.acm.org/citation.cfm?id=1073334 (2005)
Lebedew, P.: Untersuchungen über die druckkräfte des lichtes. Annalen der Physik 311(11), 433–458 (1901). doi:10.1002/andp.19013111102
Leonov, V.V.: Radiation heat transfer in mirror concentrator systems. LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbrücken (2012). (in Russian)
Liu, X., Sloan, P.P.J., Shum, H.Y., Snyder, J.: All-frequency precomputed radiance transfer for glossy objects. In: Rendering techniques. http://research.microsoft.com/en-us/um/people/johnsny/papers/allfreq.pdf (2004)
Mäki-Patola, T.: Precomputed radiance transfer. In: Tik-111500 Seminar on computer graphics. http://www.mcpatola.com/prtf_fixed.pdf (2003)
Maxwell, J.C.: A treatise on electricity and magnetism, vol. 2. Clarendon Press, Oxford (1873)
McInnes, C.R.: Solar sailing: technology, dynamics and mission applications. Springer Science & Business Media, Berlin (2004)
McMahon, J., Scheeres, D.J.: General solar radiation pressure model for global positioning system orbit determination. J. Guid. Control Dyn. 37(1), 325–330 (2014). doi:10.2514/1.61113
McMahon, J.W., Scheeres, D.J.: New solar radiation pressure force model for navigation. J. Guid. Control Dyn. 33(5), 1418–1428 (2010). doi:10.2514/1.48434
McMahon, J.W., Scheeres, D.J.: Improving space object catalog maintenance through advances in solar radiation pressure modeling. J. Guid. Control Dyn. (2015). doi:10.2514/1.G000666
Neiman, V.B., Romanov, E.M., Chernov, V.M.: Ivan Osipovich Yarkovsky. Earth Univ. 4, 63–64 (1965)
Nerovnyi, N., Zimin, V.: Determination of the radiation pressure force acting on a solar sail taking into account stress-dependent optical parameters of sail material. Her. Bauman Mosc. State Tech. Univ. Ser. Mech. Eng. 96(3):61–78. http://vestnikmach.ru/eng/catalog/simul/hidden/486.html (2014). (in Russian)
Öpik, E.J.: Collision probabilities with the planets and the distribution of interplanetary matter. In: Proceedings of the royal irish academy. Section A: mathematical and physical sciences, JSTOR, vol. 54, pp. 165–199. http://www.jstor.org/stable/20488532 (1951)
Paddack, S.J.: Rotational bursting of small celestial bodies: effects of radiation pressure. J. Geophys. Res. 74(17), 4379–4381 (1969). doi:10.1029/JB074i017p04379
Polyakhova, E.N.: Space flight with solar sail, 2nd edn. Librokom, Moscow (2011) (in Russian)
Rachkin, D., Tenenbaum, S., Dmitriev, A., Nerovnyy, N., Kotsur, O., Vorobyov, A.: 2-blades deploying by centrifugal force solar sail experiment (IAC-11, E2,3,8, x9437). In: Proceedings of 62nd international astronautical congress, pp. 9128–9142. Cape Town, SA (2011)
Radzievskii, V.V.: About the influence of the anisotropically reemited solar radiation on the orbits of asteroids and meteoroids. Astron Zh 29, 162–170 (1952)
Radzievskii, V.V.: A mechanism for the disintegration of asteroids and meteorites. Dokl Akad Nauk SSSR 97, 49–52 (1954)
Raykunov, G.G., Komkov, V.A., Melnikov, V.M., Kharlov, B.N.: Tsentrobezhnye beskarkasnye krupnogabaritnye kosmicheskie konstruktsii. ANO Fizmatlit, Moscow (2009). (in Russian, Centrifugal frameless large space structures)
Ridenoure, R., Munakata, R., Diaz, A., Wong, S., Plante, B., Stetson, D., et al.: LightSail program status: one down, one to go. In: AIAA/USU conference on small satellites. http://digitalcommons.usu.edu/smallsat/2015/all2015/32 (2015)
Rios-Reyes, L.: Solar sails: modeling, estimation, and trajectory control. PhD thesis, University of Michigan (2006)
Rios-Reyes, L., Scheeres, D.J.: Applications of the generalized model for solar sails. In: AIAA guidance, navigation, and control conference and exhibit. http://arc.aiaa.org/doi/pdf/10.2514/6.2004-5434 (2004)
Rios-Reyes, L., Scheeres, D.J.: Generalized model for solar sails. J. Spacecr. rockets 42(1), 182–185 (2005). doi:10.2514/1.9054
Rios-Reyes, L., Scheeres, D.J.: Solar-sail navigation: estimation of force, moments, and optical parameters. J. Guid. Control. Dyn. 30(3), 660–668 (2007). doi:10.2514/1.24340
Rodriguez-Solano, C.J., Hugentobler, U., Steigenberger, P.: Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Adv. Space Res. 49(7), 1113–1128 (2012). doi:10.1016/j.asr.2012.01.016
Rubincam, D.: Radiative spin-up and spin-down of small asteroids. Icarus 148(1), 2–11 (2000). doi:10.1006/icar.2000.6485
Rubincam, D.P.: Asteroid orbit evolution due to thermal drag. J. Geophys. Res. Planets 100(E1), 1585–1594 (1995). doi:10.1029/94JE02411/full
Scheeres, D.J.: The dynamical evolution of uniformly rotating asteroids subject to YORP. Icarus 188(2), 430–450 (2007). doi:10.1016/j.icarus.2006.12.015
Simonelli, D.P., Thomas, P.C., Carcich, B.T., Veverka, J.: The generation and use of numerical shape models for irregular solar system objects. Icarus 103(1), 49–61 (1993). doi:10.1006/icar.1993.1057
Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: ACM transactions on graphics (TOG), ACM, vol. 21, pp. 527–536. http://dl.acm.org/citation.cfm?id=566612 (2002)
Springer, T.A., Beutler, G., Rothacher, M.: A new solar radiation pressure model for GPS satellites. GPS Solut. 2(3), 50–62 (1999). doi:10.1007/PL00012757
Tsai, Y.T., Shih, Z.C.: All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. In: ACM transactions on graphics (TOG), ACM, vol. 25, pp. 967–976. http://dl.acm.org/citation.cfm?id=1141981 (2006)
Tsander, F.A.: From a scientific heritage. Technical translation by NASA, NASA-TT-F-541. NASA, Washington, DC. http://ntrs.nasa.gov/search.jsp?R=19690016734 (1969)
Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., et al.: Flight status of IKAROS deep space solar sail demonstrator. Acta Astron. 69(910), 833–840 (2011). doi:10.1016/j.actaastro.2011.06.005
Vokrouhlický, D.: A complete linear model for the Yarkovsky thermal force on spherical asteroid fragments. Astron. Astrophys. 344:362–366. http://adsabs.harvard.edu/full/1999A%26A...344..362V (1999)
Vokrouhlický, D., Čapek, D.: YORP-induced long-term evolution of the spin state of small asteroids and meteoroids: Rubincam’s approximation. Icarus 159(2), 449–467 (2002). doi:10.1006/icar.2002.6918
Vokrouhlický, D., Farinella, P.: The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for the plane-parallel case. Astron. J. 116(4):2032. http://iopscience.iop.org/article/10.1086/300565/meta (1998)
Wild, W., Kardashev, N.S., Likhachev, S.F., Babakin, N.G., Arkhipov, V.Y., Vinogradov, I.S., et al.: Millimetron: a large Russian–European submillimeter space observatory. Exp. Astron. 23(1), 221–244 (2008). doi:10.1007/s10686-008-9097-6
Ziebart, M.: Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape. J. Spacecr. Rockets 41(5), 840–848 (2004). doi:10.2514/1.13097
Zimin, V.N., Nerovnyi, N.A.: To the calculation of the main vector and the main momentum of light pressure force on a solar sail. Her. Bauman Mosc. State Tech. Univ. Ser. Mech. Eng. 106(1), 17–28 (2016). doi:10.18698/0236-3941-2016-1-17-28. (in Russian)
Zimin, V.N., Nerovnyy, N.A.: Analysis of the deformed shape of a heliogyro solar sail blade taking into account stress-dependent reflectivity of the material. Proc. High. Educ. Inst. Mach. Build. 658(1), 18–23. http://izvuzmash.ru/eng/catalog/calcmach/hidden/1125.html (2015) (in Russian)
Acknowledgements
Authors would like to thank assistant professor Marchevsky I.K. from department “Applied Mathematics” of BMSTU, assistant Kotsur O.S. from department “Aerospace Systems” of BMSTU, and assistant Goncharov D.A. from department “Theoretical Mechanics” of BMSTU for their valuable advice and discussions which led to the creation of the explained method.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was prepared during development of BMSTU-Sail Space Experiment Rachkin et al. (2011) and BMSTU-Sail Space Experiment (2014).
A correction to this article is available online at https://doi.org/10.1007/s10569-017-9791-7.
Rights and permissions
About this article
Cite this article
Nerovny, N., Zimin, V., Fedorchuk, S. et al. Representation of light pressure resultant force and moment as a tensor series. Celest Mech Dyn Astr 128, 483–513 (2017). https://doi.org/10.1007/s10569-017-9758-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10569-017-9758-8