Celestial Mechanics and Dynamical Astronomy

, Volume 127, Issue 2, pp 233–258 | Cite as

Selection and trajectory design to mission secondary targets

Original Article


Recently, with new trajectory design techniques and use of low-thrust propulsion systems, missions have become more efficient and cheaper with respect to propellant. As a way to increase the mission’s value and scientific return, secondary targets close to the main trajectory are often added with a small change in the transfer trajectory. As a result of their large number, importance and facility to perform a flyby, asteroids are commonly used as such targets. This work uses the Primer Vector theory to define the direction and magnitude of the thrust for a minimum fuel consumption problem. The design of a low-thrust trajectory with a midcourse asteroid flyby is not only challenging for the low-thrust problem solution, but also with respect to the selection of a target and its flyby point. Currently more than 700,000 minor bodies have been identified, which generates a very large number of possible flyby points. This work uses a combination of reachability, reference orbit, and linear theory to select appropriate candidates, drastically reducing the simulation time, to be later included in the main trajectory and optimized. Two test cases are presented using the aforementioned selection process and optimization to add and design a secondary flyby to a mission with the primary objective of 3200 Phaethon flyby and 25143 Itokawa rendezvous.


Asteroids Trajectory design Optimal control Primer Vector theory 



The authors would like to thank Stefano Campagnola for his valuable inputs and comments during the course of this work and Jack Yeh for revising the text and providing comments on its improvement.

Supplementary material

10569_2016_9724_MOESM1_ESM.pdf (51 kb)
Supplementary material 1 (pdf 51 KB)


  1. Bryson Jr., A.E., Ho, Y.-C.: Applied Optimal Control: Optimization, Estimation and Control. Revised Edition. CRC Press, New York (1975)Google Scholar
  2. Campagnola, S., Russell, R.P.: Optimal control on gauss’ equations. 2nd IAA Conference on Dynamics and Control of Space Systems, March, Rome, Italy, IAA-AAS-DyCoSS2-14-14-01, IAA Academie Internationale d’Astronautique (2014)Google Scholar
  3. Campagnola, S.: Linear reachability theory. ISAS/JAXA Internal Note, Institute of Space and Astronautical Science, Sagamihara, Japan, May (2015)Google Scholar
  4. Campagnola, S.: Simple Fast Algorithm for Low-Thrust Guidance Problems. ISAS/JAXA Internal Note. Institute of Space and Astronautical Science, Sagamihara, Japan, December (2014)Google Scholar
  5. Casalino, L., Colasurdo, G., Pastrone, D.: Optimal low-thrust escape trajectories using gravity assist. J. Guid. Control Dyn. 22(5), 637–642 (1999). doi: 10.2514/2.4451 ADSCrossRefGoogle Scholar
  6. Colasurdo, G., Casalino, L.: Optimal control law for interplanetary trajectories with nonideal solar sail. J. Spacecr. Rockets 40(2), 260–265 (2003). doi: 10.2514/2.3941 ADSCrossRefGoogle Scholar
  7. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002). doi: 10.1137/S1052623499350013 MathSciNetCrossRefMATHGoogle Scholar
  8. HAYABUSA Project.: HAYABUSA Project—Science and Data Archive, Data Archives and Transmission System DARTS. Online Source: (2015). Accessed 30 Sept 2015
  9. Jezewski, D.J., Faust, N.L.: Inequality constraints in primer-optimal, N-impulse solutions. AIAA J. 9(4), 760–763 (1971). doi: 10.2514/3.6272 ADSCrossRefGoogle Scholar
  10. Jezewski, D.J., Rozendaal, H.L.: An efficient method for calculating optimal free-space N-impulsive trajectories. AIAA J. 6(11), 2160–2165 (1968). doi: 10.2514/3.4949 ADSCrossRefMATHGoogle Scholar
  11. Kawakatsu, Y., Itawa, T.: DESTINY mission overview: a small satellite mission for deep space exploration technology demonstration. The 13th International Space Conference of Pacific-Basin Societies, May, Kyoto, Japan, Vol. 146, American Astronautical Society (2012)Google Scholar
  12. Kirk, D.E.: Optimal Control Theory: An Introduction. Dover, New York (2004)Google Scholar
  13. Kluever, C.A., Pierson, B.L.: Optimal low-thrust three-dimensional Earth–Moon trajectories. J. Guid. Control Dyn. 18(4), 830–837 (1995). doi: 10.2514/3.21466 ADSCrossRefGoogle Scholar
  14. Lantoine, G., Russell, R.P., Dargent, T.: Using multicomplex variables for automatic computation of high-order derivatives. ACM Trans. Math. Softw. 38(3), 21 (2012). doi: 10.1145/2168773.2168774
  15. Lawden, D.F.: Optimal Trajectories for Space Navigation, pp. 5–59. Butterworths, London (1963)Google Scholar
  16. Lion, P.M., Handelsman, M.: Primer vector on fixed-time impulsive trajectories. AIAA J. 6(1), 127–132 (1968). doi: 10.2514/3.4452
  17. Martins, J.R., Sturdza, P., Alonso, J.J.: The complex-step derivative approximation. ACM Trans. Math. Softw. 29(3), 245–262 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. McConaghy, T.T., Debban, T.J., Petropoulos, A.E., Longuski, J.M.: Design and optimization of low-thrust trajectories with gravity assists. J. Spacecr. Rockets 40(3), 380–387 (2003)ADSCrossRefGoogle Scholar
  19. Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, London (1987)MATHGoogle Scholar
  20. Petropoulos, A.E., Russell, R.P.: Low-thrust transfers using primer vector theory and a second-order penalty method. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August, Honolulu, Hawaii, AIAA 2008-6955, American Institute of Aeronautics and Astronautics (2008)Google Scholar
  21. Press, W.H., Teukolsky, S., Vetterling, W.T., Flannery, B.P.: Numerical Recipies in C. The Art of Scientific Computing. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  22. Ranieri, C.L., Ocampo, C.A.: Optimization of round-trip, time-constrained, finite-burn trajectories via and indirect method. J. Guid. Control Dyn. 28(2), 306–314 (2005). doi: 10.2514/1.5540 ADSCrossRefGoogle Scholar
  23. Ranieri, C.L., Ocampo, C.A.: Indirect optimization of spiral trajectories. J. Guid. Control Dyn. 29(6), 1360–1366 (2006). doi: 10.2514/1.19539 ADSCrossRefGoogle Scholar
  24. Restrepo, R.L., Russell, R.: The shadow trajectory model for a fast low-thrust indirect optimization. 26th AAS/AIAA Space Flight Mechanics Meeting, February, Napa, California, AAS 16-523, American Astronautical Society (2016)Google Scholar
  25. Russell, R.P.: Primer vector theory applied to global low-thrust trade studies. J. Guid. Control Dyn. 30(2), 460–472 (2007). doi: 10.2514/1.22984 ADSCrossRefGoogle Scholar
  26. Sarli, B.V., Kawakatsu, Y., Arai, T.: Design of a multiple flyby mission to the Phaethon Geminid Complex. J. Spacecr. Rockets 52(3), 739–745 (2015a). doi: 10.2514/1.A33130
  27. Sarli, B.V., Kawakatsu, Y.: Orbit transfer optimization for asteroid missions using weighted cost function. J. Guid. Control Dyn. 38(7), 1241–1250 (2015b). doi: 10.2514/1.G000359
  28. Senent, J., Ocampo, C., Capella, A.: Low-thrust variable specific impulse transfers and guidance to unstable periodic orbits. J. Guid. Control Dyn. 28(2), 280–290 (2005). doi: 10.2514/1.6398 ADSCrossRefGoogle Scholar
  29. Sims, J.A., Finlayson, P.A., Rinderle, E.A., Vavrina, M.A., Kowalkowski, T.D.: Implementation of a Low-Thrust Trajectory Optimization Algorithm for Preliminary Design, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August, Keystone, Colorado, AIAA 2006-6746, American Institute of Aeronautics and Astronautics (2006)Google Scholar
  30. The Minor Planet Center: MPC, Minor Planet Center Orbit Database (MPCORB): The International Astronomical Union, October (2013). (2013). Accessed 12 Oct 2013
  31. Vadali, S.R., Nah, R., Braden, E., Johnson, I.L.: Using low-thrust exhaust-modulated propulsion fuel-optimal planar Earth–Mars trajectories. J. Guid. Control Dyn. 23(3), 476–482 (2000). doi: 10.2514/2.4553 ADSCrossRefGoogle Scholar
  32. Yam, C.H., Kawakatsu, Y.: GALLOP: A low-thrust trajectory optimization tool for preliminary and high fidelity mission design. 30th International Symposium on Space Technology and Science, July, ISTS 2015-d-49. Kobe, Japan (2015)Google Scholar
  33. Zhang, C., Topputo, F., Bernelli-Zazzera, F., Zhao, Y.-S.: Low-thrust minimum-fuel optimization in the circular restricted three-body problem. J. Guid. Control Dyn. 38(8), 1501–1510 (2015). doi: 10.2514/1.G001080 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Space and Astronautical SciencesSagamiharaJapan

Personalised recommendations