Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags

Abstract

Jupiter’s satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites’ surfaces on the diurnal tidal cycle. Such variations are described by the Love numbers \(k_2\) and \(h_2\) for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags \( \phi _{k_2}\) and \( \phi _{h_2}\) of these complex numbers contain information about the rheological and dissipative states of the satellites. Starting from interior structure models and assuming a Maxwell rheology to compute the tidal deformation, we calculate the phase-lags in application to Ganymede and Europa. For both satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference \(\varDelta \phi = \phi _{k_2}- \phi _{h_2}\) can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small. In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities \({<}10^{14}\) Pa s and would indicate a highly dissipative state of the deep interior. In this case \(\varDelta \phi \) is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite. For Europa \(\varDelta \phi \) could reach values exceeding \(20^\circ \) and phase-lag measurements could help distinguish between (1) a hot dissipative silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA’s Jupiter Icy Moons Explorer (JUICE) and NASA’s Europa Multiple Flyby Mission, both targeted for the Jupiter system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bland, M.T., Showman, A.P., Tobie, G.: The orbital-thermal evolution and global expansion of Ganymede. Icarus 200(1), 207–221 (2009)

    ADS  Article  Google Scholar 

  2. Cameron, M.E., Smith-Konter, B.R., Pappalardo, R.T., Collins, G., Nimmo, F.: Tidally-driven strike-slip failure mechanics on Ganymede. In: Lunar and Planetary Science Conference, Lunar and Planetary Institute, Technical Report, vol. 44, p. 2711 (2013)

  3. Chen, E.M.A., Nimmo, F., Glatzmaier, G.A.: Tidal heating in icy satellite oceans. Icarus 229, 11–30 (2014)

    ADS  Article  Google Scholar 

  4. Durham, W.B., Stern, L.A., Kirby, S.H.: Rheology of water ices V and VI. J. Geophys. Res. 101, 2989–3002 (1996)

    ADS  Article  Google Scholar 

  5. Durham, W.B., Prieto-Ballesteros, O., Goldsby, D.L., Kargel, J.S.: Rheological and thermal properties of icy materials. Space Sci. Rev. 153, 273–298 (2010)

    ADS  Article  Google Scholar 

  6. Ferraz-Mello, S., Rodriguez, A., Hussmann, H.: Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest. Mech. Dyn. Astron. 101(1–2), 171–201 (2008). Errata: Celest. Mech. Dyn. Astron. 104(3), 319–320 (2009)

  7. Goldsby, D.L., Kohlstedt, D.L.: Superplastic deformation of ice: experimental observations. J. Geophys. Res. 106, 11 (2001)

    Article  Google Scholar 

  8. Goodman, J.C., Lenferink, E.: Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds. Icarus 221, 970–983 (2012)

    ADS  Article  Google Scholar 

  9. Grasset, O., Dougherty, M.K., Coustenis, A., Bunce, E.J., Erd, C., Titov, D., et al.: JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 1–21 (2013)

    ADS  Article  Google Scholar 

  10. Hussmann, H., Spohn, T.: Thermal-orbital evolution of Io and Europa. Icarus 171(2), 391–410 (2004)

    ADS  Article  Google Scholar 

  11. Hussmann, H., Choblet, G., Lainey, V., Matson, D.L., Sotin, C., Tobie, G., et al.: Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites. Space Sci. Rev. 153(1–4), 317–348 (2010)

    ADS  Article  Google Scholar 

  12. Hussmann, H., Sohl, F., Oberst, J.: Measuring tidal deformations at Europa’s surface. Adv. Space Res. 48(4), 718–724 (2011)

    ADS  Article  Google Scholar 

  13. Mazarico, E., Barker, M.K., Neumann, G.A., Zuber, M.T., Smith, D.E.: Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter. Geophys. Res. Lett. 41(7), 2282–2288 (2014a)

    ADS  Article  Google Scholar 

  14. Mazarico, E., Genova, A., Goossens, S., Lemoine, F.G., Neumann, G.A., Zuber, M.T., et al.: The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after 3 years in orbit. J. Geophys. Res. Planets 119(12), 2417–2436 (2014b)

    ADS  Article  Google Scholar 

  15. McCarthy, C., Castillo-Rogez, J.C.: Planetary ices attenuation properties. In: Gudipati, S.M., Castillo-Rogez, J. (eds.) The Science of Solar System Ices, pp. 183–225. Springer, New York (2013)

    Google Scholar 

  16. Moore, W.B., Schubert, G.: The tidal response of Europa. Icarus 147(1), 317–319 (2000)

    ADS  Article  Google Scholar 

  17. Moore, W.B., Schubert, G.: The tidal response of Ganymede and Callisto with and without liquid water oceans. Icarus 166(1), 223–226 (2003)

    ADS  Article  Google Scholar 

  18. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  19. Parisi, M., Iess., L, Finocchiaro., S: The gravity fields of Ganymede, Callisto and Europa: how well can JUICE do? EGU General Assembly Conference Abstracts 16 (2014)

  20. Peale, S.J.: Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys. 37(1), 533–602 (1999)

    ADS  Article  Google Scholar 

  21. Roberts, J.H., Nimmo, F.: Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus 194(2), 675–689 (2008)

    ADS  Article  Google Scholar 

  22. Schubert, G., Anderson, J.D., Spohn, T., McKinnon, W.B.: Interior composition, structure and dynamics of the galilean satellites. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (eds.) Jupiter: The Planet, Satellites and Magnetosphere, vol. 1, pp. 281–306. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  23. Schubert, G., Sohl, F., Hussmann, H.: Interior of Europa. In: Pappalardo, R.T., McKinnon, W.B., Khurana, K.K. (eds.) Europa, pp. 353–367. University of Arizona Press, Tucson (2009)

    Google Scholar 

  24. Segatz, M., Spohn, T., Ross, M.N., Schubert, G.: Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus 75(2), 187–206 (1988)

    ADS  Article  Google Scholar 

  25. Shoji, D., Hussmann, H., Kurita, K., Sohl, F.: Ice rheology and tidal heating of Enceladus. Icarus 226(1), 10–19 (2013)

    ADS  Article  Google Scholar 

  26. Showman, A.P., Malhotra, R.: Tidal evolution into the laplace resonance and the resurfacing of ganymede. Icarus 127(1), 93–111 (1997)

    ADS  Article  Google Scholar 

  27. Sohl, F., Spohn, T., Breuer, D., Nagel, K.: Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus 157(1), 104–119 (2002)

    ADS  Article  Google Scholar 

  28. Sotin, C., Poirier, J.P., Gillet, P.: Creep of high-pressure ice VI. In: Klinger J, Benest D, Dollfus A, Smoluchowski R (eds) NATO Advanced Science Institutes (ASI) Series C, NATO Advanced Science Institutes (ASI) Series C, vol. 156, pp. 109–118 (1985)

  29. Spohn, T., Schubert, G.: Oceans in the icy Galilean satellites of Jupiter? Icarus 161(2), 456–467 (2003)

    ADS  Article  Google Scholar 

  30. Steinbrügge, G., Stark, A., Hussmann, H., Sohl, F., Oberst, J.: Measuring tidal deformations by laser altimetry. A performance model for the Ganymede Laser Altimeter. Planet. Space Sci. 117, 184–191 (2015)

    ADS  Article  Google Scholar 

  31. Tobie, G., Choblet, G., Sotin, C.: Tidally heated convection: constraints on Europa’s ice shell thickness. J. Geophys. Res. Planets 108, E11 (2003)

    Article  Google Scholar 

  32. Travis, B.J., Palguta, J., Schubert, G.: A whole-moon thermal history model of Europa: impact of hydrothermal circulation and salt transport. Icarus 218, 1006–1019 (2012)

    ADS  Article  Google Scholar 

  33. Tyler, R.: Comparative estimates of the heat generated by ocean tides on icy satellites in the outer solar system. Icarus 243, 358–385 (2014)

    ADS  Article  Google Scholar 

  34. Vance, S., Bouffard, M., Choukroun, M., Sotin, C.: Ganymede’s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. Planet. Space Sci. 96, 62–70 (2014)

    ADS  Article  Google Scholar 

  35. Wahr, J.M., Zuber, M.T., Smith, D.E., Lunine, J.I.: Tides on Europa, and the thickness of Europa’s icy shell. J. Geophys. Res. Planets 111(E12005), 10 (2006)

    Google Scholar 

  36. Zschau, J.: Tidal friction in the solid earth: loading tides versus body tides. In: Brosche, P., Sündermann, J. (eds.) Tidal Friction and the Earth’s Rotation, pp. 62–94. Springer, Berlin (1978)

    Google Scholar 

Download references

Acknowledgments

We thank V. Lainey and an anonymous reviewer for very helpful and constructive comments. DS would like to acknowledge support from a JSPS Research Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hauke Hussmann.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussmann, H., Shoji, D., Steinbrügge, G. et al. Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags. Celest Mech Dyn Astr 126, 131–144 (2016). https://doi.org/10.1007/s10569-016-9721-0

Download citation

Keywords

  • Solar system
  • Satellites of Jupiter
  • Tides
  • Interior
  • Ganymede
  • Europa
  • Love numbers
  • JUICE