Secular tidal changes in lunar orbit and Earth rotation

Abstract

Small tidal forces in the Earth–Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains dn/dt = \(-25.97\pm 0.05 ''/\)cent\(^{2}\), da/dt = 38.30 ± 0.08 mm/year, and di/dt = −0.5 ± 0.1 \(\upmu \)as/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes gives \(\sim \) \(3\times 10^{-12}\)/year for the latter; solving for three LLR tidal time delays without the extra de/dt gives a larger phase lag of the N2 tide so that total de/dt = \((1.50 \pm 0.10)\times 10^{-11}\)/year. For total dn/dt, there is \(\le \)1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is \(-1316 ''\)/cent\(^{2}\) or 87.5 s/cent\(^{2}\) for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 \(\upmu \)as/year. For evolution during past times of slow recession, the eccentricity rate can be negative.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aleshkina, E.Y.: Lunar numerical theory and determination of parameters \(k_{2}\), \(\delta _{M}\) from analysis of LLR data. Astron. Astrophys. 394, 717–721 (2002). doi:10.1051/0004-6361:20021149

    ADS  Article  Google Scholar 

  2. Bills, B.G., Ray, R.D.: Lunar orbital evolution: a synthesis of recent results. Geophys. Res. Lett. 26, 3045–3048 (1999). doi:10.1029/1999GL008348

    ADS  Article  Google Scholar 

  3. Brown, E.W.: An introductory treatise on the lunar theory. Cambridge University Press, Cambridge (1896)

    Google Scholar 

  4. Brown, E.W.: Tables of the motion of the Moon. Yale University Press, New Haven (1919)

    Google Scholar 

  5. Capitaine, N., Wallace, P.T., Chapront, J.: Expressions for IAU 2000 precession quantities. Astron. Astrohys. 412, 567–586 (2003). doi:10.1051/0004-6361:20031539

    ADS  Article  Google Scholar 

  6. Chapront, J., Chapront-Touzé, M.: Lunar motion: theory, and observations. Celesti. Mech. Dyn. Astron. 66, 31–38 (1996). doi:10.1007/BF00048821

    ADS  Article  MATH  Google Scholar 

  7. Chapront-Touzé, M.: Perturbations due to the shape of the Moon in the lunar theory ELP 2000. Astron. Astrophys. 119, 256–260 (1983)

    ADS  Google Scholar 

  8. Chapront-Touzé, M., Chapront, J.: The lunar ephemeris ELP 2000. Astron. Astrophys. 124, 50–62 (1983)

    ADS  MATH  Google Scholar 

  9. Chapront-Touzé, M., Chapront, J.: ELP 2000–85: a semi-analytical lunar ephemeris adequate for historical times. Astron. Astrophys. 190, 342–352 (1988)

    ADS  Google Scholar 

  10. Chapront-Touzé, M., Chapront, J.: Lunar Tables and Programs from 4000 B. C. to A. D. 8000. Willmann-Bell, Richmond (1991)

    Google Scholar 

  11. Chapront, J., Chapront-Touzé, M., Francou, G.: A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements. Astron. Astrophys. 387, 700–709 (2002)

    ADS  Article  MATH  Google Scholar 

  12. Cheng, M., Tapley, B.D., Ries, J.C.: Deceleration in the Earth’s oblateness. J. Geophys. Res. 118, 740–747 (2013). doi:10.1002/jgrb.50058

    ADS  Article  Google Scholar 

  13. Christodoulidis, D.C., Smith, D.E., Williamson, R.G., Klosko, S.M.: Observed tidal breaking in the Earth/Moon/Sun system. J. Geophys. Res. 93, 6216–6236 (1988). doi:10.1029/JB093iB06p06216

    ADS  Article  Google Scholar 

  14. Deprit, A., Henrard, J., Rom, A.: Analytical lunar ephemeris: Delaunay’s theory. Astron. J. 76, 269–272 (1971)

    ADS  Article  MATH  Google Scholar 

  15. Dickey, J.O., Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries, J.G., et al.: Lunar laser ranging: a continuing legacy of the Apollo program. Science 265, 482–490 (1994). doi:10.1126/science.265.5171.482

    ADS  Article  Google Scholar 

  16. Eckert, W.J., Jones, R., Clark, H.K.: Construction of the lunar ephemeris, in Improved Lunar Ephemeris 1952–1959. A Joint Supplement to the American Ephemeris and the (British) Nautical Almanac. U. S. Naval Observatory, U. S. Government Printing Office, pp. 283–363 (1954)

  17. Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: The planetary and lunar ephemerides DE 430 and DE431. The Interplanetary Network (IPN) Progress Report 42-196, Feb 15, 2014, Jet Propul. Lab., Pasadena, Calif. (2014). http://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf

  18. Hansen, K.S.: Secular effects of oceanic tidal dissipation on the Moon’s orbit and the Earth’s rotation. Rev. Geophys. Space Phys. 20, 457–480 (1982). doi:10.1029/RG020i003p00457

    ADS  Article  Google Scholar 

  19. Hartmann, T., Wenzel, H.-G.: The HW95 tidal potential catalogue. Geophys. Res. Lett. 22, 3553–3556 (1995). doi:10.1029/95GL03324

    ADS  Article  Google Scholar 

  20. Henning, W.G., O’Connell, R.J., Sasselov, D.D.: Tidally heated terrestrial exoplanets: viscoelastic response models. Astrophys. J. 707, 1000–1015 (2009). doi:10.1088/0004-637X/707/2/1000

    ADS  Article  Google Scholar 

  21. Henrard, J.: Analytic lunar ephemeris: a report. Publication of the department of mathematics. University of Namur, Belgium (1972)

  22. Hilton, J.L., Capitaine, N., Chapront, J., Ferrandiz, J.M., Fienga, A., Fukushima, T., et al.: Report of the international astronomical union division I working group on precession and the ecliptic. Celesti. Mech. Dyn. Astron. 94(3), 351–367 (2006). doi:10.1007/s10569-006-0001-2

    ADS  Article  MATH  Google Scholar 

  23. Iorio, L.: On the anomalous secular increase in the eccentricity of the orbit of the Moon. Mon. Not. R. Astron. Soc. 415, 1266–1275 (2011). doi:10.1111/j.1365-2966.2011.18777.x

    ADS  Article  Google Scholar 

  24. Iorio, L.: An empirical explanation of the anomalous increases in the astronomical unit and the lunar eccentricity. Astron. J. 142(68), 1–3 (2011b). doi:10.1088/0004-6256/142/3/68

    Google Scholar 

  25. Iorio, L.: The lingering anomalous secular increase in the eccentricity of the orbit of the Moon: further attempts of explanation of cosmological origin. Galaxies 2(2), 259–262 (2014). doi:10.3390/galaxies2020259

    ADS  Article  Google Scholar 

  26. Kaula, W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. 2, 661–685 (1964). doi:10.1029/RG002i004p00661

    ADS  Article  Google Scholar 

  27. Kaula, W.M.: Theory of Satellite Geodesy. Dover Publications Inc, Mineola, New York, p. 124. (1966)

  28. Konopliv, A.S., Park, R.S., Yuan, D.-N., Asmar, S.W., Watkins, M.M., Williams, F.G., et al.: The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL primary mission. J. Geophys. Res. 118, 1415–1434 (2013). doi:10.1002/jgre.20097

    Article  Google Scholar 

  29. Krasinsky, G.A.: Tidal effects in the Earth–Moon system and the Earth’s rotation. Celesti. Mech. Dyn. Astron. 75, 39–66 (1999). doi:10.1023/A:1008381000993

    ADS  Article  MATH  Google Scholar 

  30. Lemoine, F.G., Goossens, S., Sabaka, T.J., Nicholas, J.B., Mazarico, E., Rowlands, D.D., et al.: High-degree gravity models from GRAIL primary mission data. J. Geophys. Res. Planets 118, 1676–1698 (2013). doi:10.1002/jgre.20118

    ADS  Article  Google Scholar 

  31. Lyard, F., Lefevre, F., Letellier, T., Francis, O.: Modeling the global ocean tides: modern insights from FES2004. Ocean Dyn. 56, 394–415 (2006). doi:10.1007/s10236-006-0086-x

    ADS  Article  Google Scholar 

  32. Mathews, P.M., Herring, T.A., Buffet, B.A.: Modeling of nutation and precession: New nutation series for non-rigid Earth and insights into the Earth’s interior. J. Geophys. Res. 107 (B4), ETG 3-1–ETG 3-26 (2002). doi:10.1029/2001JB000390

  33. Meyer, J., Elkins-Tanton, L., Wisdom, J.: Coupled thermal-orbital evolution of the early Moon. Icarus 208, 1–10 (2010). doi:10.1016/j.icarus.2010.01.029 Corrigendum to Coupledthermal-orbital evolution of the early Moon. doi:10.1016/j.icarus.2010.12.008

  34. Mignard, F.: The lunar orbit revisited, III. Moon Pl. 24, 189–207 (1981). doi:10.1007//BF00910608

    ADS  Article  MATH  Google Scholar 

  35. Murphy Jr., T.W., Adelberger, E.G., Battat, J.B.R., Carey, L.N., Hoyle, C.D., LeBlanc, P., et al.: APOLLO: The Apache point observatory lunar laser-ranging operation: instrument description and first detections. Publ. Astron. Soc. Pacific 120, 20–37 (2008). doi:10.1086/526428, arXiv:0710.0890 [astro-ph]

  36. Murphy Jr., T.W., Adelberger, E.G., Battat, J.B.R., Hoyle, C.D., Johnson, N.H., McMillan, R.J., et al.: APOLLO: millimeter lunar laser ranging. Class. Quantum Grav. 29, 184005 (2012). doi:10.1088/0264-9381/29/18/184005

    ADS  Article  Google Scholar 

  37. Murphy, T.W.: Lunar laser ranging: the millimeter challenge. Rep. Prog. Phys. 76, 076901 (2013). doi:10.1088/0034-4885/76/7/076901

    ADS  Article  Google Scholar 

  38. Newhall, X.X., Standish, E.M., Williams, J.G.: DE 102, a numerically integrated ephemeris of the Moon and planets spanning forty-four centuries. Astron. Astrophys. 125, 150–167 (1983)

    ADS  MATH  Google Scholar 

  39. Pavlov, D.A., Williams, J.G., Suvorkin, V.V.: Determining parameters of Moon’s orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models. Submitted to Celest. Mech. Dyn. Astron. (2016) (in press)

  40. Petit, G., Luzum, B.: IERS Conventions (2010). IERS Tech. Note 36, pp. 179, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main (2010). http://www.iers.org/TN36/

  41. Poliakow, E.: Numerical modeling of the paleotidal evolution of the Earth-Moon system. In: Proceedings of International Astronomical Union Colloquium 197. Dynamics of Populations of Planetary Systems. August–September 2004, Belgrade\(.\) Edited by Knezevic, Z., Milani, A., Cambridge Univ. Press, pp. 445–452 (2005). doi:10.1017/S174392130400897X

  42. Rambaux, N., Williams, J.G.: The Moon’s physical librations and determination of their free modes. Celesti. Mech. Dyn. Astron. 109, 85–100 (2011). doi:10.1007/s10569-010-9314-2

    ADS  Article  MATH  Google Scholar 

  43. Ray, R.D., Eanes, R.J., Lemoine, F.G.: Constraints on energy dissipation in the Earth’s body tide from satellite tracking and altimetry. Geophys. J. Int. 144, 471–480 (2001). doi:10.1046/j.1365-246x.2001.00356.x

    ADS  Article  Google Scholar 

  44. Ray, R.D., Erofeeva, S.Y.: Long-period tidal variations in the length of day. J. Geophys. Res. Solid Earth 119, 1498–1509 (2014). doi:10.1002/2013JB010830

    ADS  Article  Google Scholar 

  45. Rubincam, D.P.: Tidal friction in the Earth–Moon system and Laplace planes: Darwin redux. Icarus 266, 24–43 (2016). doi:10.1016/j.icarus.2015.10.024

    ADS  Article  Google Scholar 

  46. Samain, E., Mangin, J.F., Veillet, C., Torre, J.-M., Fridelance, P., Chabaudie, J.E., et al.: Millimetric lunar laser ranging at OCA (Observatoire de la Côte d’Azur). Astron. Astrophys. Suppl. Ser. 130, 235–244 (1998). doi:10.1051/aas:1998227

    ADS  Article  Google Scholar 

  47. Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touzé, M., Francou, G., Laskar, J.: Numerical expressions for precession formulae and mean elements for the Moon and planets. Astron. Astrophys. 282, 663–683 (1994)

    ADS  Google Scholar 

  48. Standish, E.M., Williams, J.G.: Orbital ephemerides of the Sun, Moon, and planets. Chapter 8. In: Urban, S., Seidelmann, P.K. (eds.) Explanatory Supplement to the Astronomical Almanac, 3rd edition, pp. 305–345. University Science Books, Mill Valley, CA (2013). http://iau-comm4.jpl.nasa.gov/XSChap8.pdf

  49. Stephenson, F.R., Morrison, L.V.: Long-term fluctuations in the Earth’s rotation: 700 BC to AD 1990. Philos. Trans. R. Soc. 351, 165–202 (1995). doi:10.1098/rsta.1995.0028

    ADS  Article  Google Scholar 

  50. Webb, D.J.: Tides and the evolution of the Earth–Moon system. Geophys. J. R. Astron. Soc. 70, 261–271 (1982). doi:10.1111/j1365-246X.1982tb06404.x

    ADS  Article  Google Scholar 

  51. Williams, J.G., Sinclair, W.S., Yoder, C.F.: Tidal acceleration of the Moon. Geophys. Res. Lett. 5, 943–946 (1978). doi:10.1029/GL005i011p00943

    ADS  Article  Google Scholar 

  52. Williams, J.G.: Contributions to the Earth’s obliquity rate, precession, and nutation. Astron. J. 108, 711–724 (1994). doi:10.1086/117108

    ADS  Article  Google Scholar 

  53. Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., Dickey, J.O.: Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001). doi:10.1029/2000JE001396

    ADS  Article  Google Scholar 

  54. Williams, J.G., Boggs, D.H.: Lunar core and mantle. What does LLR see? In: Proceedings of 16th International Workshop on Laser Ranging, SLR—the Next Generation, October 2008, Poznan, Poland, ed. Stanislaw Schillak, pp. 101–120 (2009). http://www.astro.amu.edu.pl/ILRS_Workshop_2008/index.php

  55. Williams, J.G, Boggs, D.H., Folkner, W.M.: DE430 Lunar Orbit, Physical Librations, and Surface Coordinates. IOM 335-JW,DB,WF-20130722-016, July 22, 2013, Jet Propul. Lab., Pasadena, Calif. (2013). http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430_moon_coord.pdf

  56. Williams, J.G., Turyshev, S.G., Boggs, D.H.: The past and present Earth-Moon system: the speed of light stays steady as tides evolve. Planet. Sci. 3, 2 (2014a). doi:10.1186/s13535-014-0002-5. http://www.planetary-science.com/content/3/1/2

  57. Williams, J.G., Konopliv, A.S., Boggs, D.H., Park, R.S., Yuan, D.-N., Lemoine, F.G., et al.: Lunar interior properties from the GRAIL mission. J. Geophys. Res. Planets 119, 1546–1578 (2014b). doi:10.1002/2013JE004559

    ADS  Article  Google Scholar 

  58. Williams, J.G., Boggs, D.H.: Tides on the Moon: theory and determination of dissipation. J. Geophys. Res. Planets 120(4), 689–724 (2015). doi:10.1002/2014JE004755

    ADS  Article  Google Scholar 

  59. Yoder, C.F., Williams, J.G., Sinclair, W.S., Parke, M.E.: Tidal variations of Earth rotation. J. Geophys. Res. 86, 881–891 (1981). doi:10.1029/JB086iB02p00881

    ADS  Article  Google Scholar 

  60. Yoder, C.F., Williams, J.G., Dickey, J.O., Schutz, B.E., Eanes, R.J., Tapley, B.D.: Secular variation of Earth’s gravitational harmonic J2 coefficient from Lageos and the nontidal acceleration of Earth rotation. Nature 303, 757–762 (1983). doi:10.1038/303757a0

    ADS  Article  Google Scholar 

Download references

Acknowledgments

We thank the lunar laser ranging stations at McDonald Observatory, Texas, Observatoire de la Côte d’Azur, France, Haleakala Observatory, Hawaii, Apache Point Observatory, New Mexico, and Matera, Italy that provided the data sets that make LLR analyses possible. LLR data are available from the International Laser Ranging Service archive at http://ilrs.gsfc.nasa.gov/. We acknowledge extensive conversations with D. Pavlov about tidal modeling that benefited this paper. C. F. Yoder contributed to the early development of the solar perturbation scaling factors for LLR results. M. Efroimsky provided a valuable review. The research described in this paper was carried out at the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James G. Williams.

Appendix

Appendix

List of symbols

a :

Semimajor axis of lunar orbit

\(a'\) :

Semimajor axis of solar orbit

C :

Moment of inertia

\(C_{2m}\) :

Gravity field coefficients

D :

Mean elongation of Moon from Sun

e :

Eccentricity of lunar orbit

F :

Lunar mean argument of latitude

G :

Gravitational constant

\(h_{2}\) :

Vertical Love number

i :

Lunar inclination to ecliptic plane

\(k_{2}\) :

Potential Love number

\(K_{V}\) :

Parameter for dissipation at lunar CMB

l :

Lunar mean anomaly

\(l'\) :

Solar mean anomaly

L :

Lunar mean longitude

\(L'\) :

Solar mean longitude

m :

Order

\(M_{E}\) :

Mass of Earth

\(M_{M}\) :

Mass of Moon

\(M_{S}\) :

Mass of Sun

\(M'\) :

Mass of external body

n :

Sidereal mean motion of Moon

\(n'\) :

Sidereal mean motion of Sun

P :

Period

\(P_{2m}\) :

Associated Legendre polynomial

q :

Index for different periods in Fourier series

r :

Distance from center of Earth to body

R :

Radius of Earth

S :

Scaling parameters near unity

\(S_{2m}\) :

Gravity field coefficient

t :

Time

\(u_{i}\) :

Unit vector from Earth to external body

\(U_{ij }\) :

Functions (a/\(r)^{3} u_{i} u_{j}\)

\(U_{ijq }\) :

Periodic term of \(U_{ij}\)

\(V_{2}\) :

Potential from tidal distortion

\(W_{2}\) :

Tide raising potential

\(\alpha \) :

Right ascension

\(\varepsilon \) :

Obliquity

\(\Delta \) :

Small difference

\(\Delta C_{2m}\) :

Degree-2 tidal gravity field coefficients

\(\Delta \) S \(_{2m}\) :

Degree-2 tidal gravity field coefficients

\(\varTheta \) :

Earth-centered angle between an external body and a selected point

\(\vartheta \) :

Rotation angle between precessing equinox and zero longitude

\(\lambda \) :

Terrestrial longitude

\(\tau _{0}\) :

Zonal time delay

\(\tau _{1}\) :

Diurnal time delay for orbit

\(\tau _{2}\) :

Semidiurnal time delay for orbit

\(\tau _{R1}\) :

Diurnal time delay for rotation

\(\tau _{R2}\) :

Semidiurnal time delay for rotation

\(\tau _{M}\) :

Time delay for tides on Moon

\(\chi \) :

Phase lag

\(\omega \) :

Lunar mean argument of perigee

\(\omega _{E}\) :

Spin rate of Earth

\(\varOmega \) :

Lunar mean node

\(\varpi \) :

Lunar longitude of perigee \(\varOmega \)+\(\omega \)

\(\zeta \) :

Angular argument

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Williams, J.G., Boggs, D.H. Secular tidal changes in lunar orbit and Earth rotation. Celest Mech Dyn Astr 126, 89–129 (2016). https://doi.org/10.1007/s10569-016-9702-3

Download citation

Keywords

  • Tides
  • Lunar orbit
  • Earth rotation
  • Tidal acceleration
  • Tidal dissipation
  • Moon
  • Lunar laser ranging (LLR)