Quantification of tidal parameters from Solar System data

Abstract

Tidal dissipation is the main driver of orbital evolution of natural satellites and a key point to understand the exoplanetary system configurations. Despite its importance, its quantification from observations still remains difficult for most objects of our own Solar System. In this work, we overview the method that has been used to determine, directly from observations, the tidal parameters, with emphasis on the Love number \(k_2\) and the tidal quality factor Q. Up-to-date values of these tidal parameters are summarized. Last, an assessment on the possible determination of the tidal ratio \(k_2/Q\) of Uranus and Neptune is done. This may be particularly relevant for coming astrometric campaigns and future space missions focused on these systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Archinal, B.A., et al.: Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest. Mech. Dyn. Astron. 109, 101–135 (2011)

    ADS  Article  MATH  Google Scholar 

  2. Arlot, J.-E., Emelyanov, N.V.: The NSDB natural satellites astrometric database. Astron. Astrophys. 503, 631–638 (2009)

    ADS  Article  Google Scholar 

  3. Crida, A., Charnoz, S.: Formation of regular satellites from ancient massive rings in the solar system. Science 338, 1196 (2012)

    ADS  Article  Google Scholar 

  4. Cuk, M.: Recent Origin of Titan’s Orbital Eccentricity. American Astronomical Society, DDA meeting vol. 45, p. 301.01 (2014)

  5. Gavrilov, S.V., Zharkov, V.N.: Love numbers of the giant planets. Icarus 32, 443–449 (1977)

    ADS  Article  Google Scholar 

  6. Goldreich, P., Soter, S.: Q in the solar system. Icarus 5, 375–389 (1966)

    ADS  Article  Google Scholar 

  7. Iess, L., et al.: The tides of Titan. Science 337, 457–459 (2012)

    ADS  Article  Google Scholar 

  8. Jacobson, R.A.: The orbits of the Neptunian satellites and the orientation of the pole of Neptune. Astron. J. 137, 4322–4329 (2009)

    ADS  Article  Google Scholar 

  9. Jacobson, R.A., Lainey, V.: Martian satellite orbits and ephemerides. Planet. Space Sci. 102, 35–44 (2014)

    ADS  Article  Google Scholar 

  10. Konopliv, A.S., Yoder, C.F.: Venusian \(k_2\) tidal Love number from Magellan and PVO tracking data. Geophys. Res. Lett. 23, 1857–1860 (1996)

    ADS  Article  Google Scholar 

  11. Konopliv, A.S., et al.: Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011)

    ADS  Article  Google Scholar 

  12. Konopliv, A.S., et al.: The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission. J. Geophys. Res. (Planets) 118, 1415–1434 (2013)

    ADS  Article  Google Scholar 

  13. Lainey, V.: A new dynamical model for the Uranian satellites. Planet. Space Sci. 56, 1766–1772 (2008)

    ADS  Article  Google Scholar 

  14. Lainey, V., Tobie, G.: New constraints on Io’s and Jupiter’s tidal dissipation. Icarus 179, 485–489 (2005)

    ADS  Article  Google Scholar 

  15. Lainey, V., et al.: Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009)

    ADS  Article  Google Scholar 

  16. Lainey, V., et al.: New constraints on Saturn’s interior from Cassini astrometric data (2015). arXiv:1510.05870

  17. Lemoine, F.G., et al.: High-degree gravity models from GRAIL primary mission data. J. Geophys. Res. (Planets) 118, 1676–1698 (2013)

    ADS  Article  Google Scholar 

  18. Love, A.E.H.: Some Problems of Geodynamics. Cambridge University Press, Cambridge (1911)

    Google Scholar 

  19. Matson, D.L., et al.: Heat flow from Io. J. Geophys. Res. 86, 1664–1672 (1981)

    ADS  Article  Google Scholar 

  20. Mazarico, E., et al.: The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit. J. Geophys. Res. (Planets) 119, 2417 (2014)

    ADS  Article  Google Scholar 

  21. Moyer, T.D.: Mathematical formulation of the double-precision orbit determination program (DPDOP). Technical report 32-1527, National Aeronautics and Space Administration (1971)

  22. Moyer, T.D.: Formulation for Observed and Computed Values of Deep Space Network Observables, p. 576. Wiley, Hoboken (2003)

    Google Scholar 

  23. Pavlis, D.E., et al.: GEODYN II System Description, vol. 1–5, Contractor Report. SGT Inc., Greenbelt, MD (2013)

  24. Peters, C.F.: Numerical integration of the satellites of the outer planets. Astron. Astrophys. 104, 37–41 (1981)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Petit, G., Luzum, B.: IERS conventions. IERS Technical Note No. 36 (2010)

  26. Ray, R.D., et al.: Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry. Nature 381, 595–597 (1996)

    ADS  Article  Google Scholar 

  27. Ray, R.D., et al.: Constraints on energy dissipation in the Earth’s body tide from satellite tracking and altimetry. Geophys. J. Int. 144, 471–480 (2001)

    ADS  Article  Google Scholar 

  28. Robert, V., et al.: A new astrometric reduction of photographic plates using the DAMIAN digitizer: improving the dynamics of the Jovian system. Mon. Not. R. Astron. Soc. 415, 701–708 (2011)

    ADS  Article  Google Scholar 

  29. Robert, V., et al.: A new astrometric measurement and reduction of USNO photographic observations of Phobos and Deimos: 1967–1997. Astron. Astrophys. 582, A36 (2015)

    ADS  Article  Google Scholar 

  30. Sharpless, B.P.: Secular accelerations in the longitudes of the satellites of Mars. Astron. J. 51, 185–186 (1945)

    ADS  Article  Google Scholar 

  31. Spencer, J.R., et al.: Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311, 1401–1405 (2006)

    ADS  Article  Google Scholar 

  32. Veiga, C.H., et al.: Positions of Uranus and its main satellites. Astron. J. 125, 2714–2720 (2003)

    ADS  Article  Google Scholar 

  33. Wahr, J.M.: Body tides on an elliptical, rotating, elastic and oceanless earth. Geophys. J. R. Astron. Soc. 64, 677–703 (1981)

    ADS  Article  MATH  Google Scholar 

  34. Williams, J.G., et al.: Lunar interior properties from the GRAIL mission. J. Geophys. Res. (Planets) 119, 1546–1578 (2014)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

V. L. is grateful to P. Rosenblatt, J. C. Marty and B. Noyelles for fruitful discussions. This work has been supported by the International Space Science Institute (ISSI), the Scientific Council of the Paris Observatory and the PNP (INSU/CNES).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valéry Lainey.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lainey, V. Quantification of tidal parameters from Solar System data. Celest Mech Dyn Astr 126, 145–156 (2016). https://doi.org/10.1007/s10569-016-9695-y

Download citation

Keywords

  • Tides
  • Astrometry
  • Space geodesy
  • Q
  • Love number