Effect of the rotation and tidal dissipation history of stars on the evolution of close-in planets

A Correction to this article is available

This article has been updated

Abstract

Since 20 years, a large population of close-in planets orbiting various classes of low-mass stars (from M-type to A-type stars) has been discovered. In such systems, the dissipation of the kinetic energy of tidal flows in the host star may modify its rotational evolution and shape the orbital architecture of the surrounding planetary system. In this context, recent observational and theoretical works demonstrated that the amplitude of this dissipation can vary over several orders of magnitude as a function of stellar mass, age and rotation. In addition, stellar spin-up occurring during the Pre-Main-Sequence (PMS) phase because of the contraction of stars and their spin-down because of the torque applied by magnetized stellar winds strongly impact angular momentum exchanges within star–planet systems. Therefore, it is now necessary to take into account the structural and rotational evolution of stars when studying the orbital evolution of close-in planets. At the same time, the presence of planets may modify the rotational dynamics of the host stars and as a consequence their evolution, magnetic activity and mixing. In this work, we present the first study of the dynamics of close-in planets of various masses orbiting low-mass stars (from \(0.6~M_\odot \) to \(1.2~M_\odot \)) where we compute the simultaneous evolution of the star’s structure, rotation and tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to the stellar dynamical tide, i.e. tidal inertial waves excited in the convection zone, can be larger by several orders of magnitude than the one of the equilibrium tide currently used in Celestial Mechanics, especially during the PMS phase. Moreover, because of this stronger tidal friction in the star, the orbital migration of the planet is now more pronounced and depends more on the stellar mass, rotation and age. This would very weakly affect the planets in the habitable zone because they are located at orbital distances such that stellar tide-induced migration happens on very long timescales. We also demonstrate that the rotational evolution of host stars is only weakly affected by the presence of planets except for massive companions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

  • 24 January 2019

    This is an erratum for the publication Bolmont andMathis 2016 (Celestial Mechanics and Dynamical Astronomy, 126, 275-296).

Notes

  1. 1.

    For a close-in planet, the evolution time scale of its rotation period and obliquity is very short. We therefore expect the planets we consider here to be synchronized and with a null obliquity very early in the evolution (e.g., Leconte et al. 2010).

  2. 2.

    We point out here that equivalent quality factors \({\overline{Q'}}\) and \({\overline{Q}}\), which are proportional to the inverse of the frequency-averaged dissipation \(\left\langle \mathrm{Im} \left[ k_2^2(\omega )\right] \right\rangle _{\omega }\), where \(\left\langle \ldots \right\rangle _{\omega }=\int _{-\infty }^{\infty }\ldots {\mathrm {d}\omega }/{\omega }\), are not equivalent to potentially defined frequency-averaged quality factors \(\left\langle Q'\left( \omega \right) \right\rangle _{\omega }\) and \(\left\langle Q\left( \omega \right) \right\rangle _{\omega }\). In this framework, the relevant physical quantity being \(\left\langle \mathrm{Im} \left[ k_2^2(\omega )\right] \right\rangle _{\omega }\), we prefer to define directly equivalent quality factors from it.

References

  1. Albrecht, S., Winn, J.N., Johnson, J.A., et al.: ApJ 757, 18 (2012)

    ADS  Google Scholar 

  2. Alexander, M.E.: Ap&SS 23, 459 (1973)

    ADS  Google Scholar 

  3. Auclair-Desrotour, P., Le Poncin-Lafitte, C., Mathis, S.: A&A 561, L7 (2014)

    ADS  Google Scholar 

  4. Auclair Desrotour, P., Mathis, S., Le Poncin-Lafitte, C.: A&A 581, A118 (2015)

    ADS  Google Scholar 

  5. Amard, L., Palacios, A., Charbonnel, C., Gallet, F., Bouvier, J.: A&A 587, 105 (2016)

    ADS  Google Scholar 

  6. Baglin, A., Auvergne, M., Boisnard, L., et al.: In: COSPAR Meeting, 36th COSPAR Scientific Assembly, vol. 36 (2006)

  7. Barker, A.J.: MNRAS 414, 1365 (2011)

    ADS  Google Scholar 

  8. Barker, A.J., Lithwick, Y.: MNRAS 437, 305 (2014)

    ADS  Google Scholar 

  9. Barker, A.J., Ogilvie, G.I.: MNRAS 395, 2268 (2009)

    ADS  Google Scholar 

  10. Barker, A.J., Ogilvie, G.I.: MNRAS 404, 1849 (2010)

    ADS  Google Scholar 

  11. Barnes, S.A.: ApJ 586, 464 (2003)

    ADS  Google Scholar 

  12. Barnes, S.A., Kim, Y.-C.: ApJ 721, 675 (2010)

    ADS  Google Scholar 

  13. Baruteau, C., Rieutord, M.: J. Fluid Mech. 719, 47 (2013)

    ADS  MathSciNet  Google Scholar 

  14. Bolmont, E., Raymond, S.N., Leconte, J.: A&A 535, A94 (2011)

    ADS  Google Scholar 

  15. Bolmont, E., Raymond, S.N., Leconte, J., Hersant, F., Correia, A.C.M.: A&A 583, A116 (2015)

    ADS  Google Scholar 

  16. Bolmont, E., Raymond, S.N., Leconte, J., Matt, S.P.: A&A 544, A124 (2012)

    ADS  Google Scholar 

  17. Bonfils, X., Delfosse, X., Udry, S., et al.: A&A 549, A109 (2013)

    ADS  Google Scholar 

  18. Borucki, W.J., Koch, D., Basri, G., et al.: Science 327, 977 (2010)

    ADS  Google Scholar 

  19. Bouvier, J.: A&A 489, L53 (2008)

    ADS  Google Scholar 

  20. Bouvier, J., Forestini, M., Allain, S.: A&A 326, 1023 (1997)

    ADS  Google Scholar 

  21. Brun, A.-S.: Magnetic fields throughout stellar evolution. In: Proceedings of the International Astronomical Union, IAU Symposium, vol. 302, p. 114 (2014)

  22. Ceillier, T., van Saders, J., García, R.A., et al.: MNRAS 456, 119 (2016)

    ADS  Google Scholar 

  23. Charbonneau, D., Brown, T.M., Latham, D.W., Mayor, M.: ApJ 529, L45 (2000)

    ADS  Google Scholar 

  24. Charbonneau, P.: Ann. Rev. Astron. Astrophys. 52, 251 (2014)

    ADS  Google Scholar 

  25. Choi, P.I., Herbst, W.: Astron. J. 111, 283 (1996)

    ADS  Google Scholar 

  26. Correia, A.C.M., Boué, G., Laskar, J., Rodríguez, A.: A&A 571, A50 (2014)

    ADS  Google Scholar 

  27. Correia, A.C.M., Laskar, J.: J. Geophys. Res. Planets 108, 9 (2003)

    Google Scholar 

  28. Damiani, C., Lanza, A.F.: A&A 574, A39 (2015)

    ADS  Google Scholar 

  29. Edwards, S., Strom, S.E., Hartigan, P., et al.: Astron. J. 106, 372 (1993)

    ADS  Google Scholar 

  30. Efroimsky, M.: ApJ 746, 150 (2012)

    ADS  Google Scholar 

  31. Efroimsky, M., Makarov, V.V.: ApJ 764, 26 (2013)

    ADS  Google Scholar 

  32. Eggleton, P.P., Kiseleva, L.G., Hut, P.: ApJ 499, 853 (1998)

    ADS  Google Scholar 

  33. Fabrycky, D.C., Lissauer, J.J., Ragozzine, D., et al.: ApJ 790, 146 (2014)

    ADS  Google Scholar 

  34. Fang, J., Margot, J.-L.: ApJ 761, 92 (2012)

    ADS  Google Scholar 

  35. Favier, B., Barker, A.J., Baruteau, C., Ogilvie, G.I.: MNRAS 439, 845 (2014)

    ADS  Google Scholar 

  36. Ferraz-Mello, S., Tadeu dos Santos, M., Folonier, H., et al.: ApJ 807, 78 (2015)

    ADS  Google Scholar 

  37. Gallet, F., Bouvier, J.: A&A 556, A36 (2013)

    ADS  Google Scholar 

  38. Gallet, F., Bouvier, J.: A&A 577, A98 (2015)

    ADS  Google Scholar 

  39. García, R.A., Ceillier, T., Salabert, D., et al.: A&A 572, A34 (2014)

    ADS  Google Scholar 

  40. Gizon, L., Ballot, J., Michel, E., et al.: Proc. Natl. Acad. Sci. 110, 13267 (2013)

    ADS  Google Scholar 

  41. Goodman, J., Dickson, E.S.: ApJ 507, 938 (1998)

    ADS  Google Scholar 

  42. Goodman, J., Lackner, C.: ApJ 696, 2054 (2009)

    ADS  Google Scholar 

  43. Guenel, M., Baruteau, C., Mathis, S., & Rieutord, M.: A&A 589, A22 (2016)

  44. Guenel, M., Mathis, S., Remus, F.: A&A 566, L9 (2014)

    ADS  Google Scholar 

  45. Guillot, T., Lin, D.N.C., Morel, P., Havel, M., Parmentier, V.: EAS Publications Series, vol. 65, pp. 327–336 (2014)

  46. Hansen, B.M.S.: ApJ 723, 285 (2010)

    ADS  Google Scholar 

  47. Hansen, B.M.S.: ApJ 757, 6 (2012)

    ADS  Google Scholar 

  48. Henning, W.G., O’Connell, R.J., Sasselov, D.D.: ApJ 707, 1000 (2009)

    ADS  Google Scholar 

  49. Henry, G.W., Marcy, G.W., Butler, R.P., Vogt, S.S.: ApJ 529, L41 (2000)

    ADS  Google Scholar 

  50. Husnoo, N., Pont, F., Mazeh, T., et al.: MNRAS 422, 3151 (2012)

    ADS  Google Scholar 

  51. Hut, P.: A&A 99, 126 (1981)

    ADS  Google Scholar 

  52. Irwin, J., Berta, Z.K., Burke, C.J., et al.: ApJ 727, 56 (2011)

    ADS  Google Scholar 

  53. Ivanov, P.B., Papaloizou, J.C.B., Chernov, S.V.: MNRAS 432, 2339 (2013)

    ADS  Google Scholar 

  54. Jackson, B., Greenberg, R., Barnes, R.: ApJ 681, 1631 (2008)

    ADS  Google Scholar 

  55. Kaula, W.M.: Rev. Geophys. Space Phys. 2, 661 (1964)

    ADS  Google Scholar 

  56. Kawaler, S.D.: ApJ 333, 236 (1988)

    ADS  Google Scholar 

  57. Lai, D.: MNRAS 423, 486 (2012)

    ADS  Google Scholar 

  58. Lanza, A.F.: A&A 512, A77 (2010)

    ADS  Google Scholar 

  59. Lanza, A.F., Shkolnik, E.L.: MNRAS 443, 1451 (2014)

    ADS  Google Scholar 

  60. Leconte, J., Chabrier, G., Baraffe, I., Levrard, B.: A&A 516, A64+ (2010)

    ADS  Google Scholar 

  61. MacGregor, K.B., Brenner, M.: ApJ 376, 204 (1991)

    ADS  Google Scholar 

  62. Maeder, A.: Physics, Formation and Evolution of Rotating Stars. Springer, Berlin (2009)

  63. Mathis, S.: In: Martins, F., Boissier, S., Buat, V., Cambrésy, L., Petit, P. (eds.) SF2A-2015: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, pp.401–405 (2015a)

  64. Mathis, S.: A&A 580, L3 (2015b)

    ADS  Google Scholar 

  65. Mathis, S., Zahn, J.-P.: A&A 425, 229 (2004)

    ADS  Google Scholar 

  66. Mathis, S., Le Poncin-Lafitte, C.: A&A 497, 889 (2009)

    ADS  Google Scholar 

  67. Mathis, S. & Remus, F.: In: Rozelot, J.-P., Neiner C. (eds.) Lecture Notes in Physics. The Environments of the Sun and the Stars), vol. 857, p. 111 (2013)

  68. Matt, S.P., Brun, A.S., Baraffe, I., Bouvier, J., Chabrier, G.: ApJ 799, L23 (2015)

    ADS  Google Scholar 

  69. Mayor, M., Queloz, D.: Nature 378, 355 (1995)

    ADS  Google Scholar 

  70. McQuillan, A., Mazeh, T., Aigrain, S.: ApJ 775, L11 (2013)

    ADS  Google Scholar 

  71. McQuillan, A., Mazeh, T., Aigrain, S.: ApJS 211, 24 (2014)

    ADS  Google Scholar 

  72. Mignard, F.: Moon Planets 20, 301 (1979)

    ADS  Google Scholar 

  73. Ogilvie, G.I.: MNRAS 429, 613 (2013)

    ADS  Google Scholar 

  74. Ogilvie, G.I.: ARA&A 52, 171 (2014)

    ADS  Google Scholar 

  75. Ogilvie, G.I., Lin, D.N.C.: ApJ 610, 477 (2004)

    ADS  Google Scholar 

  76. Ogilvie, G.I., Lin, D.N.C.: ApJ 661, 1180 (2007)

    ADS  Google Scholar 

  77. Paz-Chinchón, F., Leão, I.C., Bravo, J.P., et al.: ApJ 803, 69 (2015)

    ADS  Google Scholar 

  78. Penev, K., Zhang, M., Jackson, B.: PASP 126, 553 (2014)

    ADS  Google Scholar 

  79. Perryman, M.: The Exoplanet Handbook. Cambridge University Press (2011)

  80. Pont, F.: MNRAS 396, 1789 (2009)

    ADS  Google Scholar 

  81. Poppenhaeger, K., Wolk, S.J.: A&A 565, L1 (2014)

    ADS  Google Scholar 

  82. Rebull, L.M., Stauffer, J.R., Megeath, S.T., Hora, J.L., Hartmann, L.: ApJ 646, 297 (2006)

    ADS  Google Scholar 

  83. Rebull, L.M., Wolff, S.C., Strom, S.E.: Astron. J. 127, 1029 (2004)

    ADS  Google Scholar 

  84. Remus, F., Mathis, S., Zahn, J.-P.: A&A 544, A132 (2012a)

    ADS  Google Scholar 

  85. Remus, F., Mathis, S., Zahn, J.-P., Lainey, V.: A&A 541, A165 (2012b)

    ADS  Google Scholar 

  86. Réville, V., Brun, A.S., Matt, S.P., Strugarek, A., Pinto, R.F.: ApJ 798, 116 (2015)

    ADS  Google Scholar 

  87. Savonije, G.-J.: In: Goupil, M.-J., Zahn J.-P. (eds.) EAS Publications Series, vol. 29, pp. 91–125 (2008)

  88. Siess, L., Dufour, E., Forestini, M.: A&A 358, 593 (2000)

    ADS  Google Scholar 

  89. Skumanich, A.: ApJ 171, 565 (1972)

    ADS  Google Scholar 

  90. Teitler, S., Königl, A.: ApJ 786, 139 (2014)

    ADS  Google Scholar 

  91. Terquem, C., Papaloizou, J.C.B., Nelson, R.P., Lin, D.N.C.: ApJ 502, 788 (1998)

    ADS  Google Scholar 

  92. Tobie, G., Mocquet, A., Sotin, C.: Icarus 177, 534 (2005)

    ADS  Google Scholar 

  93. van Saders, J.L., Ceillier, T., Metcalfe, T.S., Silva Aguirre, V., Pinsonneault, M.H., García, R.A., Mathur, S., Davies, G.R.: Nature 529, 181–184 (2016)

  94. Winn, J.N., Fabrycky, D., Albrecht, S., Johnson, J.A.: ApJ 718, L145 (2010)

    ADS  Google Scholar 

  95. Witte, M.G., Savonije, G.J.: A&A 350, 129 (1999)

    ADS  Google Scholar 

  96. Zahn, J.P.: Ann. Astrophys. 29, 489 (1966)

    ADS  Google Scholar 

  97. Zahn, J.-P.: A&A 41, 329 (1975)

    ADS  Google Scholar 

  98. Zahn, J.-P.: A&A 57, 383 (1977)

    ADS  Google Scholar 

  99. Zahn, J.-P.: A&A 220, 112 (1989)

    ADS  Google Scholar 

  100. Zahn, J.-P., Bouchet, L.: A&A 223, 112 (1989)

    ADS  Google Scholar 

  101. Zahn, J.-P.: A&A 265, 115 (1992)

    ADS  Google Scholar 

  102. Zahn, J.-P.: A&A 288, 829 (1994)

    ADS  Google Scholar 

Download references

Acknowledgments

We thank the referee for the useful comments. E. B. acknowledges that this work is part of the F.R.S.-FNRS “ExtraOrDynHa” research project. S. M. acknowledges funding by the European Research Council through ERC grant SPIRE 647383. This work was also supported by the ANR Blanc TOUPIES SIMI5-6 020 01, the Programme National de Planétologie (CNRS/INSU) and PLATO CNES grant at Service d’Astrophysique (CEA-Saclay).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emeline Bolmont.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bolmont, E., Mathis, S. Effect of the rotation and tidal dissipation history of stars on the evolution of close-in planets. Celest Mech Dyn Astr 126, 275–296 (2016). https://doi.org/10.1007/s10569-016-9690-3

Download citation

Keywords

  • Planets and satellites: dynamical evolution and stability
  • Planet–star interactions
  • Terrestrial planets
  • Gaseous planets
  • Stars: evolution
  • Stars: rotation