Skip to main content
Log in

Broad search for trajectories from Earth to Callisto–Ganymede–JOI double-satellite-aided capture at Jupiter from 2020 to 2060

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Employing multiple gravity-assist flybys of Jupiter’s Galilean moons can save a substantial amount of \(\varDelta V\) when capturing into orbit about Jupiter. Using Callisto and Ganymede, the most massive and distant of the Galilean moons, as gravity-assist bodies reduces the Jupiter orbit insertion \(\varDelta V\) cost, while allowing the spacecraft to remain above the worst of Jupiter’s radiation belts. A phase-angle approach is used to find initial guesses for a Lambert targeter to find patched-conic Callisto–Ganymede transfers. A B-plane targeter using grid search methodology is used to backward target Earth to find launch conditions. Twenty-nine distinct patched-conic trajectories were found from Earth to Callisto–Ganymede–JOI capture throughout the search space from 2020–2060. Five promising trajectories were found that launch from Earth between July 11, 2023 and July 20, 2023, and arrive at Jupiter between February and September 2026. These trajectories were numerically integrated using GMAT and, in the author’s opinion, are excellent candidates for use on NASA’s planned Europa Clipper mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acton, C.: Ancillary data services of NASA’s Navigation and Ancillary Information Facility. Planet. Space Sci. 44, 65–70 (1996)

    Article  ADS  Google Scholar 

  • Buffington, B.: Trajectory design for the Europa Clipper mission concept. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper No. 2014-4105, San Diego, CA (2014)

  • Didion, A.M., Lynam, A.E.: Impulsive trajectories from Earth to Callisto–Io–Ganymede triple flyby capture at Jupiter. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper No. 2014-4106, San Diego, CA 2014)

  • Folkner, W.M.: Uncertainties in the JPL Planetary Ephemeris. In: Proceedings of the Journes, p. 43. (2010)

  • Garrett, H.B., Kokorowski, M., Jun, I., Evans, R.W.: Galileo interim radiation electron model update-2012, JPL Publication 12–9. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Ca (2012)

  • Gooding, R.H.: A Procedure for the solution of Lambert’s orbital boundary-value problem. Celest. Mech. Dyn. Astron. 48, 145–165 (1990)

    MATH  ADS  Google Scholar 

  • Hughes, S.: GMAT-Generalized Mission Analysis Tool. NASA Goddard Space Flight Center, Greenbelt, MD (2008)

    Google Scholar 

  • Izzo, D., Simões, L.F., Märtens, M., de Croon, G.C.H.E, Heritier, A., Yam, C.H.: Search for a grand tour of the Jupiter Galilean Moons. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, Amsterdam, The Netherlands (2013)

  • Jacobson, R., Haw, R., McElrath, T., Antreasian, P.: A comprehensive orbit reconstruction for the Galileo prime mission in the J2000 system. In: AAS/AIAA Astrodynamics Specialist Conference (AAS Paper 99-330), Girdwood, AK (1999)

  • Johannesen, J.R., D’Amario, L. A.: Europa Orbiter mission trajectory design. In: Proceedings of the AAS/AIAA Astrodynamics Conference, AAS Paper 99-330, Girdwood, AK (1999)

  • Lancaster, E.R., Blanchard, R.C.: A unified form of Lambert’s theorem. NASA technical note TN D-5368 (1969)

  • Landau, D., Strange, N., Lam, T.: Solar electric propulsion with satellite flyby for Jovian Capture. In: AAS/AIAA Spaceflight Mechanics Conference, San Diego, CA (2010)

  • Longman, R.W.: Gravity Assist from Jupiter’s Moons for Jupiter-Orbiting Space Missions. The RAND Corp, Santa Monica, CA (1968)

    Google Scholar 

  • Lynam, A.E.: Broad-search algorithms for the spacecraft trajectory design of Callisto–Ganymede–Io triple flybys from 2024–2040, part I: Heuristic pruning of the solution space. Acta Astronaut. 94, 246–252 (2014)

    Article  ADS  Google Scholar 

  • Lynam, A.E.: Broad-search algorithms for the spacecraft trajectory design of Callisto–Ganymede–Io triple flybys from 2024–2040, part II: Lambert pathfinding and trajectory solutions. Acta Astronaut. 94, 253–261 (2014)

    Article  ADS  Google Scholar 

  • Lynam, A.E.: Broad-search algorithms for finding triple- and quadruple-satellite-aided captures at Jupiter from 2020 to 2080. Celest. Mech. Dyn. Astron. 121, 347–363 (2015). doi:10.1007/s10569-015-9602-y

  • Lynam, A.E., Longuski, J.M.: Interplanetary trajectories for multiple satellite-aided capture at Jupiter. J. Guid. Contr. Dyn. 34, 1485–1494 (2011)

    Article  ADS  Google Scholar 

  • Lynam, A.E., Longuski, J.M.: Preliminary analysis for the navigation of multiple-satellite-aided capture sequences at Jupiter. Acta astronaut. 70, 33–43 (2012)

    Article  ADS  Google Scholar 

  • Lynam, A.E., Kloster, K.W., Longuski, J.M.: Multiple Satellite-Aided Capture Trajectories at Jupiter Using the Laplace Resonance. Celest. Mech. Dyn. Astron. 109, 59–84 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • MacDonald, M., McInnes, C.: Spacecraft planetary capture using gravity-assist maneuver. J. Guid. Contr. Dyn. 28, 365–368 (2005)

    Article  ADS  Google Scholar 

  • Nock, K.T., Uphoff, C.: Satellite aided orbit capture. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 79-165, Provincetown, MA (1979)

  • Patrick, S.K., Lynam, A.E.: Optimal SEP trajectories from Earth to Jupiter with triple flyby capture. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper No. 2014-4218, San Diego, CA (2014)

  • Riedel, J.E., Bhaskaran, S., Eldred, D.B., Gaskell, R.A., Grasso, C.A., Kennedy, B.M., et al.: AutoNav Mark3: Engineering the Next Generation of Autonomous Onboard Navigation and Guidance. AIAA/AAS Guidance. Navigation and Control Conference, Paper No. 06-2515. Keystone, CO (2006)

  • Russell, R.P., Arora, N.: FIRE: a fast, accurate, and smooth planetary body ephemeris interpolation system. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper No. 2008-6278, Honolulu, HI (2008)

  • Schadegg, M., Russell, R.P., Lantoine, G.: Jovian orbit capture and eccentricity reduction using electrodynamic tether propulsion. J Spacecr. Rockets. doi:10.2514/1.A32962

  • Strange, N., Landau, D., Hofer, R., Snyder, J.S., Randolph, T., Campagnola, S., et al.: Solar electric propulsion gravity-assist tours for Jupiter missions. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper No. 2012-4518, Minneapolis, MN (2012)

  • Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 3rd edn. Springer, New York (2008)

    Google Scholar 

  • Wilson, M.G., Potts, C.L., Mase, R.A., Halsell, C.A., Byrnes, D.V.: Manuever design for Galileo Jupiter approach and orbital operations. In: Space Flight Dynamics, Proceedings of the 12th International Symposium, Darmstadt, Germany (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred E. Lynam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynam, A.E. Broad search for trajectories from Earth to Callisto–Ganymede–JOI double-satellite-aided capture at Jupiter from 2020 to 2060. Celest Mech Dyn Astr 124, 33–50 (2016). https://doi.org/10.1007/s10569-015-9649-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9649-9

Keywords

Navigation