Skip to main content
Log in

Analytic propagation of near-circular satellite orbits in the atmosphere of an oblate planet

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript


In the present paper, an averaging perturbation technique leads to the determination of a time-explicit analytic approximate solution for the motion of a low-Earth-orbiting satellite . The two dominant perturbations are taken into account: the Earth oblateness and the atmospheric drag. The proposed orbit propagation algorithm comprises the Brouwer–Lyddane transformation (direct and inverse), coupled with the analytic solution of the averaged equations of motion. This solution, based on equinoctial elements, is singularity-free, and therefore it stands for low inclinations and small eccentricities as well. The simplifying assumption of a constant atmospheric density is made, which is reasonable for near-circular orbits and short-time orbit propagation. Two sets of time-explicit equations are provided, for moderate and small eccentricities (\(\mathcal {O} ( e^{4}) =0\) and \(\mathcal {O}( e^{2}) =0,\) respectively), and they are obtained by performing (1) a regularization of the original averaged differential equations of motion for the vectorial orbital elements, and (2) Taylor series expansions of the aforementioned equations with respect to the eccentricity. The numerical simulations show that the errors due to the use of the proposed analytic model in the presence of drag are almost the same as the errors of the Brouwer first-order approximation in the absence of drag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. Due to the presence of significant uncertainties in the atmosphere (influence of the solar activity, day/night density variations, the atmospheric bulge, winds), realistic long-term propagations in the presence of drag cannot be addressed with deterministic tools [see Dell’Elce and Kerschen (2014)].


  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1964)

    MATH  Google Scholar 

  • Angeles, J.: Fundamentals of Robotic Mechanical Systems. Springer, New York (2002)

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA, Reston (1999)

    Book  MATH  Google Scholar 

  • Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  • Brouwer, D., Hori, G.-I.: Theoretical evaluation of atmospheric drag effects in the motion of an artificial satellite. Astron. J. 66, 193 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  • Cain, B.J.: Determination of mean elements for Brouwer’s satellite theory. Astron. J. 67, 391 (1962)

    Article  ADS  Google Scholar 

  • Chao, C.C.: Applied Orbit Perturbation and Maintenance. Aerospace Press, New York (2005)

    Google Scholar 

  • Cid, R., Lahulla, J.F.: Perturbaciones de corto periodo en el movimiento de un satélite artificial, en función de las variables de Hill. Publicaciones de la Revista de la Academia de Ciencias de Zaragoza 24, 159–165 (1969)

    Google Scholar 

  • Condurache, D., Martinusi, V.: Analytical orbit propagator based on vectorial orbital elements. In AIAA Guidance, Navigation and Control Conference, Boston, MA, Aug 2013

  • Dell’Elce, L., Kerschen, G.: Probabilistic assessment of the lifetime of low-earth-orbit spacecraft: uncertainty characterization. J. Guid Control Dyna 1, 1–13 (2014)

    Google Scholar 

  • Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1, 12–30 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Deprit, A.: The elimination of the Parallax in satellite theory. Celest. Mech. 24, 111–153 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Franco, J.M.: An analytic solution for Deprit’s radial intermediary with drag in the equatorial case. Bull. Astron. Inst. Czechoslov. 42, 219–224 (1991)

    ADS  MATH  Google Scholar 

  • Garfinkel, B.: The orbit of a satellite of an oblate planet. Astron. J. 64, 353 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  • Gurfil, P., Lara, M.: Satellite onboard orbit propagation using Déprits radial intermediary. Celest. Mech. Dyn. Astron. 120(2), 217–232 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  • Hestenes, D.: New Foundations for Classical Mechanics. Kluwer Academic Publishers, New York (1999)

  • King-Hele, D.: Butterworths mathematical texts. In: Theory of Satellite Orbits in an Atmosphere. Butterworths, New York (1964)

  • Kozai, Y.: The motion of a close earth satellite. Astron. J. 64, 367–377 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  • Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Delaunay variables approach to the elimination of the perigee in artificial satellite theory. Celest. Mech. Dyn. Astron. 120(1), 39–56 (2014)

  • Lyddane, R.H.: Small eccentricities or inclinations in the Brouwer theory of the artificial satellite. Astron. J. 68, 555–558 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  • Mittleman, D., Jezewski, D.: An analytic solution to the classical two-body problem with drag. Celest. Mech. 28, 401–413 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Parks, A.D.: A Drag-Augmented Brouwer–Lyddane Artificial Satellite Theory and Its Application to Long-Term Station Alert Predictions. Technical Report NSWC TR 83–107, Naval Surface Weapons Center, Dahlgren, VA, Apr 1983

  • Roy, A.E.: Orbital Motion. CRC Press, New York (2004)

    Book  Google Scholar 

  • Schaub, H., Junkins, J.L.: AIAA education series. In: Analytical Mechanics of Space Systems. American Institute of Aeronautics and Astronautics, New York (2003)

  • Vallado, D.A., McClain, W.D.: Fundamentals of Astrodynamics and Applications. Microcosm Press, Space technology library (2001)

  • Vinh, N.X., Longuski, J.M., Busemann, A., Culp, R.D.: Analytic theory of orbit contraction due to atmospheric drag. Acta Astron. 6, 697–723 (1979)

    Article  MATH  Google Scholar 

  • Vinti, J.P.: Theory of the orbit of an artificial satellite with use of spheroidal coordinates. Astron. J. 65, 353–354 (1960)

    Article  ADS  Google Scholar 

Download references


This work was supported by the Belgian National Fund for Scientific Research (FRIA) and the Marie Curie BEIPD-COFUND programme at the University of Liège, Belgium. The Authors also thank Dr. Martin Lara, as well as the other anonymous Reviewer, for their valuable comments and suggestions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Vladimir Martinusi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinusi, V., Dell’Elce, L. & Kerschen, G. Analytic propagation of near-circular satellite orbits in the atmosphere of an oblate planet. Celest Mech Dyn Astr 123, 85–103 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: