Skip to main content
Log in

Polynomial equations for science orbits around Europa

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this paper, the design of science orbits for the observation of a celestial body has been carried out using polynomial equations. The effects related to the main zonal harmonics of the celestial body and the perturbation deriving from the presence of a third celestial body have been taken into account. The third body describes a circular and equatorial orbit with respect to the primary body and, for its disturbing potential, an expansion in Legendre polynomials up to the second order has been considered. These polynomial equations allow the determination of science orbits around Jupiter’s satellite Europa, where the third body gravitational attraction represents one of the main forces influencing the motion of an orbiting probe. Thus, the retrieved relationships have been applied to this moon and periodic sun-synchronous and multi-sun-synchronous orbits have been determined. Finally, numerical simulations have been carried out to validate the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarellos, J.L.: Perturbations on a stationary satellite by the longitude-dependent terms in Mars’ gravitational field. J. Astronaut. Sci. 57(4), 701–715 (2010)

    Article  Google Scholar 

  • Anderson, J.D., Schubert, G., Jacobson, R.A., Lau, E.L., Moore, W.B., Sjogren, W.L.: Europa’s differentiated internal structure: inferences from four Galileo encounters. Science 281(5385), 2019–2022 (1998)

    Article  ADS  Google Scholar 

  • Broucke, R.A.: Long-term third-body effects via double averaging. J. Guid. Control Dyn. 26(1), 27–32 (2003)

    Article  ADS  Google Scholar 

  • Circi, C., Ortore, E., Bunkheila, F., Ulivieri, C.: Elliptical multi-sun-synchronous orbits for Mars exploration. Celest. Mech. Dyn. Astron. 114(3), 215–227 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  • Coffey, S.L., Deprit, A., Miller, B.L.: The critical inclination in artificial satellite theory. Celest. Mech. Dyn. Astron. 39(4), 365–406 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Coffey, S.L., Deprit, A., Deprit, E.: Frozen orbits for satellites close to an Earth-like planet. Celest. Mech. Dyn. Astron. 59(1), 37–72 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Domingos, R.C., Vilhena de Moraes, R., Prado, A.F.B.A.: Third-body perturbation in the case of elliptic orbits for the disturbing body. Math. Probl. Eng. Article ID 763654, p. 14 (2008)

  • Kozai, Y.: The motion of a close Earth satellite. Astron. J. 64(1274), 367–377 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  • Lara, M.: Repeat ground track orbits of the Earth tesseral problem as bifurcations of the equatorial family of periodic orbits. Celest. Mech. Dyn. Astron. 86(2), 143–162 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Lara, M., San Juan, J.F.: Dynamic behavior of an orbiter around Europa. J. Guid. Control Dyn. 28(2), 291–297 (2005)

    Article  ADS  Google Scholar 

  • Lara, M., San Juan, J.F., Ferrer, S.: Secular motion around triaxial, synchronously orbiting, planetary satellites: application to Europa. Chaos: an interdisciplinary. J. Nonlinear Sci. 15(4), 043101-1–043101-11 (2005)

    MathSciNet  Google Scholar 

  • Lara, M., Russell, R.P.: Computation of a science orbit about Europa. J. Guid. Control Dyn. 30(1), 259–263 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  • Lara, M.: Simplified equations for computing science orbits around planetary satellites. J. Guid. Control Dyn. 31(1), 172–181 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  • Liu, X., Baoyin, H., Ma, X.: Five special types of orbits around Mars. J. Guid. Control Dyn. 33(4), 1294–1301 (2010)

    Article  ADS  Google Scholar 

  • Liu, X., Baoyin, H., Ma, X.: Analytical investigations of quasi-circular frozen orbits in the Martian gravity field. Celest. Mech. Dyn. Astron. 109(3), 303–320 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Liu, X., Baoyin, H., Ma, X.: Periodic orbits around areostationary points in the Martian gravity field. Res. Astron. Astrophys. 12(5), 551–562 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  • Merson, R.H.: The motion of a satellite in an axi-symmetric gravitational field. Geophys. J. Int. 4(Supplement 1), pp. 17–52 (1961)

  • Ortore, E., Circi, C., Bunkheila, F., Ulivieri, C.: Earth and Mars observation using periodic orbits. Adv. Space Res. 49(1), 185–195 (2012)

    Article  ADS  Google Scholar 

  • Ortore, E., Circi, C., Bunkheila, F., Ulivieri, C.: Retrieval of aerosol properties by using low earth orbit. Aerosp. Sci. Technol. 30(1), 333–338 (2013)

    Article  Google Scholar 

  • Ortore, E., Circi, C., Ulivieri, C., Cinelli, M.: Multi-sunsynchronous orbits in the solar system. Earth Moon Planets 111(3–4), 157–172 (2014)

    Article  ADS  Google Scholar 

  • Paskowitz, M.E., Scheeres, D.J.: Design of science orbits about planetary satellites: application to Europa. J. Guid. Control Dyn. 29(5), 1147–1158 (2006)

    Article  ADS  Google Scholar 

  • Prado, A.F.B.A.: Third-body perturbation in orbits around natural satellites. J. Guid. Control Dyn. 26(1), 33–40 (2003)

    Article  ADS  Google Scholar 

  • Russell, R.P., Lara, M.: Long-lifetime lunar repeat ground track orbits. J. Guid. Control Dyn. 30(4), 982–993 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  • Russell, R.P., Lara, M.: On the design of an Enceladus science orbit. Acta Astronaut. 65(1–2), 27–39 (2009)

    Article  ADS  Google Scholar 

  • Scheeres, D.J., Guman, M.D., Villac, B.F.: Stability analysis of planetary satellite orbiters: application to the Europa orbiter. J. Guid. Control Dyn. 24(4), 778–787 (2001)

    Article  ADS  Google Scholar 

  • Silva, J.J., Pilar, R.: Optimal longitudes determination for the station keeping of areostationary satellites. Planet. Space Sci. 87, 14–18 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Circi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cinelli, M., Circi, C. & Ortore, E. Polynomial equations for science orbits around Europa. Celest Mech Dyn Astr 122, 199–212 (2015). https://doi.org/10.1007/s10569-015-9616-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9616-5

Keywords

Navigation