Skip to main content
Log in

Satellite onboard orbit propagation using Deprit’s radial intermediary

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Short-term satellite onboard orbit propagation is required when GPS position measurements are unavailable due to an obstruction or a malfunction. In this paper, it is shown that natural intermediary orbits of the main problem provide a useful alternative for the implementation of short-term onboard orbit propagators instead of direct numerical integration. Among these intermediaries, Deprit’s radial intermediary (DRI), obtained by the elimination of the parallax transformation, shows clear merits in terms of computational efficiency and accuracy. Indeed, this proposed analytical solution is free from elliptic integrals, as opposed to other intermediaries, thus speeding the evaluation of corresponding expressions. The only remaining equation to be solved by iterations is the Kepler equation, which in most of cases does not impact the total computation time. A comprehensive performance evaluation using Monte-Carlo simulations is performed for various orbital inclinations, showing that the analytical solution based on DRI outperforms a Dormand–Prince fixed-step Runge–Kutta integrator as the inclination grows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. While some authors consider von Zeipel’s method to be a simple application of Poincaré’s theory, the latter applies to non-degenerate Hamiltonians, whereas the main problem Hamiltonian is degenerate. Improvements in Poincaré’s theory due to von Zeipel, and following successful applications by Brouwer in the field of artificial satellites, renders the “von Zeipel–Brouwer theory” different from Poincaré’s theory (see details in Ferraz-Mello 2007).

  2. Alternatively, adequate units of length and time can be chosen to show that Eq. (1) depends only on \(C_{2,0}\).

  3. Note that the equatorial Hamiltonian \(\mathcal {H}_\mathrm {E}=-\frac{1}{2}(\mu /a)+\frac{1}{2}(\mu /r)\,(\alpha /r)^2\,C_{2,0}\), in spite of being a particular integrable case of the main problem (Jezewski 1983), does not comply with the traditional requirements on intermediary orbits because, as easily checked, its secular terms differ from those of the main problem in first order effects.

  4. According to common practice, the prime notation is suppressed to simplify notation, as long as there is no risk of confusion.

  5. The DOPRI5 code is publicly available at http://www.unige.ch/hairer/prog/nonstiff/dopri5.f.

References

  • Aksenov, E.P., Grebennikov, E.A., Demin, V.G.: General solution to the problem of motion of a satellite in the normal field of attraction of the earth. Iskusstvenllye Sputmki Zemll (Artif. Satell. Earth) 8, 64–72 (1961)

    Google Scholar 

  • Aksnes, K.: On the dynamical theory of a near-earth satellite. I. Astrophysica Norvegica 10, 69 (1965)

    ADS  Google Scholar 

  • Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378–397 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  • Celletti, A., Negrini, P.: Non-integrability of the problem of motion around an oblate planet. Celest. Mech. Dyn. Astron. 61, 253–260 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Cid, R., Lahulla, J.F.: Perturbaciones de corto periodo en el movimiento de un satélite artificial, en función de las variables de Hill. Publicaciones de la Revista de la Academia de Ciencias de Zaragoza 24, 159–165 (1969)

    Google Scholar 

  • Coffey, S., Deprit, A.: Third-order solution to the main problem in satellite theory. J. Guid. Control Dyn. 5(4), 366–371 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Coffey, S.L., Neal, H.L., Segerman, A.M., Travisano, J.J.: An analytic orbit propagation program for satellite catalog maintenance. In: Alfriend, K.T., Ross, I.M., Misra, A.K., Peters, C.F. (eds.) AAS/AIAA Astrodynamics Conference 1995, Advances in the Astronautical Sciences, vol. 90, pp. 1869–1892. American Astronautical Society, Univelt Inc., USA (1996)

  • Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1(1), 12–30 (1969). doi:10.1007/BF01230629

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Deprit, A.: The elimination of the parallax in satellite theory. Celest. Mech. 24(2), 111–153 (1981). doi:10.1007/BF01229192

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Deprit, A., Ferrer, S.: Note on Cid’s radial intermediary and the method of averaging. Celest. Mech. 40(3–4), 335–343 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Deprit, A., Rom, A.: The main problem of artificial satellite theory for small and moderate eccentricities. Celest. Mech. 2(2), 166–206 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980). doi:10.1016/0771-050X(80)90013-3

    Article  MATH  MathSciNet  Google Scholar 

  • Ferraz-Mello, S.: Canonical Perturbation Theories—Degenerate Systems and Resonance. Astrophysics and Space Science Library, vol. 345. Springer, Berlin (2007)

    Google Scholar 

  • Ferrer, S., Lara, M.: On roto-translatory motion: reductions and radial intermediaries. J. Astronaut. Sci. 59(1–2), 21–39 (2012). doi:10.1007/s40295-013-0004-7

  • Ferrer, S., Molero, F.J.: Intermediaries for gravity-gradient attitude dynamics I. Action-angle variables (IAAA-AAS-DyCoSS2-04-05). In: Second IAA Conference on Dynamics and Control of Space Systems, Rome, Italy, 24–26 March 2014

  • Garfinkel, B.: On the motion of a satellite of an oblate planet. Astron. J. 63(1257), 88–96 (1958). doi:10.1086/107697

    Article  ADS  Google Scholar 

  • Garfinkel, B., Aksnes, K.: Spherical coordinate intermediaries for an artificial satellite. Astron. J. 75(1), 85–91 (1970). doi:10.1086/110946

    Article  ADS  MathSciNet  Google Scholar 

  • Gyldén, H.: Die intermediärie Bahn des Mondes. Acta Math. 7, 125–172. https://ia600309.us.archive.org/8/items/actamathematica00upps/actamathematica00upps.pdf (1885–1886)

  • Hairer, E., Nørset, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Non-stiff Problems, 2nd edn. Springer, Berlin (2008)

    Google Scholar 

  • Healy, L.M.: The main problem in satellite theory revisited. Celest. Mech. Dyn. Astron. 76(2), 79–120 (2000). doi:10.1023/A:1008305628985

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Hintz, G.: Survey of orbit element sets. J. Guid. Control Dyn. 31(3), 785–790 (2008)

    Article  ADS  Google Scholar 

  • Hoots, F.R., Schumacher Jr., P.W., Glover, R.A.: History of analytical orbit modeling in the U.S. space surveillance system. J. Guid. Control Dyn. 27(5), 174–185 (2004). doi:10.2514/1.9161.

  • Hori, G.: Theory of general perturbation with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18(4), 287–296 (1966)

    ADS  Google Scholar 

  • Irigoyen, M., Simo, C.: Nonintegrability of the \(J_2\) problem. Celest. Mech. Dyn. Astron. 55(3), 281–287 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Izsak, I.G.: On satellite orbits with very small eccentricities. Astron. J. 66, 129–131 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  • Izsak, I.G.: A second-order solution of Vinti’s dynamical problem. Smithson. Contrib. Astrophys. 6, 81 (1963)

    ADS  MathSciNet  Google Scholar 

  • Jezewski, D.J.: An analytic solution for the \({J}_2\) perturbed equatorial orbit. Celest. Mech. 30(4), 363–371 (1983). doi: 10.1007/BF01375506

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kozai, Y.: Second-order solution of artificial satellite theory without air drag. Astron. J. 67(7), 446–461 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  • Lara, M., Gurfil, P.: Integrable approximation of \(J_2\)-perturbed relative orbits. Celest. Mech. Dyn. Astron. 114(3), 229–254 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Proper averaging via parallax elimination (AAS 13-722). In: Astrodynamics 2013. Advances in the Astronautical Sciences, vol. 150, pp. 315–331. American Astronautical Society, Univelt Inc., USA (2014)

  • Lukyanov, L.G., Emeljanov, N.V., Shirmin, G.I.: Generalized problem of two fixed centers or the Darboux–Gredeaks problem. Cosm. Res. 43(3), 186–191 (2005). doi:10.1007/s10604-005-0033-5

    Article  ADS  Google Scholar 

  • Lyddane, R.H.: Small eccentricities or inclinations in the Brouwer theory of the artificial satellite. Astron. J. 68, 555–558 (1963). doi:10.1086/109179

    Article  ADS  MathSciNet  Google Scholar 

  • Martinusi, V., Gurfil, P.: Solutions and periodicity of satellite relative motion under even zonal harmonics perturbations. Celest. Mech. Dyn. Astron. 111(4), 387–414 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Sterne, T.E.: The gravitational orbit of a satellite of an oblate planet. Astron. J. 63, 28 (1958). doi:10.1086/107673

    Article  ADS  MathSciNet  Google Scholar 

  • Vinti, J.P.: Theory of the orbit of an artificial satellite with use of spheroidal coordinates. Astron. J. 65, 353–354 (1960)

    Article  ADS  Google Scholar 

  • Vinti, J.P.: Theory of an accurate intermediary orbit for satellite astronomy. J. Res. Natl. Bur. Stand. 65B(3), 169–201 (1961)

    Article  MathSciNet  Google Scholar 

  • von Zeipel, H.: Recherches sur le mouvement des petites planètes. Almqvist & Wiksells Boktryckeri-A.B. (1921)

Download references

Acknowledgments

This research was supported by the Government of Spain (Projects AYA 2009-11896, AYA 2010-18796) and by the European Research Council Starting Independent Researcher Grant 278231: Flight Algorithms for Disaggregated Space Architectures (FADER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pini Gurfil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurfil, P., Lara, M. Satellite onboard orbit propagation using Deprit’s radial intermediary. Celest Mech Dyn Astr 120, 217–232 (2014). https://doi.org/10.1007/s10569-014-9576-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9576-1

Keywords

Navigation