Advertisement

Celestial Mechanics and Dynamical Astronomy

, Volume 120, Issue 4, pp 373–400 | Cite as

Evolution of the \(\mathcal {L}_1\) halo family in the radial solar sail circular restricted three-body problem

  • Patricia VerrierEmail author
  • Thomas Waters
  • Jan Sieber
Original Article

Abstract

We present a detailed investigation of the dramatic changes that occur in the \(\mathcal {L}_1\) halo family when radiation pressure is introduced into the Sun–Earth circular restricted three-body problem (CRTBP). This photo-gravitational CRTBP can be used to model the motion of a solar sail orientated perpendicular to the Sun-line. The problem is then parameterized by the sail lightness number, the ratio of solar radiation pressure acceleration to solar gravitational acceleration. Using boundary-value problem numerical continuation methods and the AUTO software package (Doedel et al. in Int J Bifurc Chaos 1:493–520, 1991) the families can be fully mapped out as the parameter \(\beta \) is increased. Interestingly, the emergence of a branch point in the retrograde satellite family around the Earth at \(\beta \approx 0.0387\) acts to split the halo family into two new families. As radiation pressure is further increased one of these new families subsequently merges with another non-planar family at \(\beta \approx 0.289\), resulting in a third new family. The linear stability of the families changes rapidly at low values of \(\beta \), with several small regions of neutral stability appearing and disappearing. By using existing methods within AUTO to continue branch points and period-doubling bifurcations, and deriving a new boundary-value problem formulation to continue the folds and Krein collisions, we track bifurcations and changes in the linear stability of the families in the parameter \(\beta \) and provide a comprehensive overview of the halo family in the presence of radiation pressure. The results demonstrate that even at small values of \(\beta \) there is significant difference to the classical CRTBP, providing opportunity for novel solar sail trajectories. Further, we also find that the branch points between families in the solar sail CRTBP provide a simple means of generating certain families in the classical case.

Keywords

CRTBP Solar sails Periodic orbits Halo orbits Numerical continuation Families of periodic orbits Solar radiation pressure 

Notes

Acknowledgments

P.V. acknowledges funding from the University of Portsmouth. The research of J.S. is supported by EPSRC Grant EP/J010820/1.

References

  1. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations. SIAM, Philadelphia (1998)CrossRefzbMATHGoogle Scholar
  2. Baoyin, H., McInnes, C.R.: Solar sail halo orbits at the Sun Earth artificial \(\text{ L }_1\) point. Celest. Mech. Dyn. Astron. 94, 155–171 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. Biggs, J., McInnes, C.: Solar sail formation flying for deep-space remote sensing. J. Spacecraft Rocket. 46, 670–678 (2009)ADSCrossRefGoogle Scholar
  4. Biggs, J.D., McInnes, C.R., Waters, T.: Control of solar sail periodic orbits in the elliptic three-body problem. J. Guid. Control Dyn. 32, 318–320 (2009)ADSCrossRefGoogle Scholar
  5. Beyn, W.-J., Kleß, W., Thümmler, V.: Continuation of low-dimensional invariant subspaces in dynamical systems of large dimension. In: Fiedler, B. (ed.) Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp. 47–72. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. Breakwell, J.V., Brown, J.V.: The ‘halo’ family of 3-dimensional periodic orbits in the earth-moon restricted 3-body problem. Celest. Mech. 20, 389–404 (1979)Google Scholar
  7. Calleja, R.C., Doedel, E.J., Humphries, A.R., Lemus-Rodríguez, A., Oldeman, E.B.: Boundary-value problem formulations for computing invariant manifolds and connecting orbits in the circular restricted three body problem. Celest. Mech. Dyn. Astron. 114, 77–106 (2012)ADSCrossRefGoogle Scholar
  8. Chernikov, Y.A.: The photogravitational restricted three-body problem. Sov. Astron. 14, 176–181 (1970)ADSMathSciNetGoogle Scholar
  9. Deprit, A., Palmore, J.: Families of periodic orbits continued in regularizing coordinates. Cel. Mech. 1, 150–162 (1969)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. Devaney, R.L.: Reversible diffeomorphisms and flows. Trans. Am. Math. Soc. 218, 89 (1976)Google Scholar
  11. Doedel, E. J., Oldeman, B.E., et al.: AUTO-07P: continuation and bifurcation software for ordinary differential equations. Concordia University, Montréal (2012). http://cmvl.cs.concordia.ca/auto/
  12. Doedel, E.J., Romanov, V.A., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Galán-Vioque, J., Vanderbauwhede, A.: Elemental periodic orbits associated with the libration points in the circular restricted 3-body problem. Int. J. Bifurc. Chaos 17, 2625–2678 (2007)CrossRefzbMATHGoogle Scholar
  13. Doedel, E.J., Govaerts, W., Kuznetsov, Y.A., Dhooge, A.: Numerical continuation of branch points of equilibria and periodic orbits. Int. J. Bifurc. Chaos 15, 841–860 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  14. Doedel, E.J., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Galán-Vioque, J., Vanderbauwhede, A.: Computation of periodic solutions of conservative systems with application to the 3-body problem. Int. J. Bifurc. Chaos 13, 1353 (2003)CrossRefzbMATHGoogle Scholar
  15. Doedel, E.J., Keller, H.B., Kernévez, J.P.: Numerical analysis and control of bifurcation problems (I): bifurcation in finite dimensions. Int. J. Bifurc. Chaos 1, 493–520 (1991)CrossRefzbMATHGoogle Scholar
  16. Doedel, E.J.: Auto: a program for the automatic bifurcation analysis of autonomous systems. Congr. Numer. 30, 265–384 (1981)MathSciNetGoogle Scholar
  17. Farrés, A., Jorba, À.: Periodic and quasi-periodic motions of a solar sail close to \(\text{ SL }_1\) in the Earth–Sun system. Celest. Mech. Dyn. Astron. 107, 233–253 (2010)ADSCrossRefzbMATHGoogle Scholar
  18. Gómez, G., Llibre, J., Martínez, R., Simo, C.: Dynamics and Mission Design Near Libration Points, Volume 1: Fundamentals: The Case of Collinear Libration Points. World Scientific, River Edge, NJ (2001)Google Scholar
  19. Heiligers, J., McInnes, C.: Novel solar sail mission concepts for space weather forecasting. In: AAS 14–239 (2014)Google Scholar
  20. Hénon, M.: Numerical exploration of the restricted problem V. Astron. Astrophys. 1, 223–238 (1969)ADSzbMATHGoogle Scholar
  21. Howard, J.E., MacKay, R.S.: Linear stability of symplectic maps. J. Math. Phys. 28, 1036–1051 (1987)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. Howell, K.C., Campbell, E.T.: Three-dimensional periodic solutions that bifurcate from halo families in the circular restricted three-body problem, AAS 99–161. Adv. Astronaut. Sci. 102, 891–910 (1999)Google Scholar
  23. Howell, K.C.: Three-dimensional periodic halo orbits. Celest. Mech. 32, 53–71 (1984)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. Krauskopf, B., Osinga, H. M., Galan-Vioque, J. (ed.): Numerical Continuation Methods for Dynamical Systems. Springer, Berlin (2007)Google Scholar
  25. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: The Genesis trajectory and heteroclinic connections, AAS 99–451. Adv. Astronaut. Sci. 103, 2327–2343 (1999)Google Scholar
  26. MacDonald, M., McInnes, C.: Solar sail science mission applications and advancement. Adv. Space Res. 48, 1702–1716 (2011)ADSCrossRefGoogle Scholar
  27. McInnes, C.R.: Solar Sailing. Technology, Dynamics and Mission Applications. Springer, London (1999)Google Scholar
  28. McInnes, A.: Strategies for Solar Sail Mission Design in the Circular Restricted Three-Body Problem, Master’s Thesis, Purdue University (2000)Google Scholar
  29. Munõz-Almaraz, F.J., Freire, E., Galán, J., Doedel, E., Vanderbauwhede, A.: Continuation of periodic orbits in conservative and Hamiltonian systems. Phys. D Nonlinear Phenom. 181, 1–38 (2003)ADSCrossRefzbMATHGoogle Scholar
  30. Ozimek, M.T., Grebow, D.J., Howell, K.C.: Design of solar sail trajectories with applications to lunar south pole coverage. J. Guid. Cont. Dyn. 32, 1884–1897 (2009)ADSCrossRefGoogle Scholar
  31. Schuerman, D.W.: The restricted three-body problem including radiation pressure. Astrophys. J. 238, 337–342 (1980)ADSCrossRefMathSciNetGoogle Scholar
  32. Sevryuk, M.B.: Reversible Systems. Springer, Berlin (1986)zbMATHGoogle Scholar
  33. Simmons, J.F.L., McDonald, A.J.C., Brown, J.C.: The restricted 3-body problem with radiation pressure. Celest. Mech. 35, 145–187 (1985)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. Strömgren, E.: Connaissance actuelle des orbites dans le problème des trois corps. Bull. Astron. 9, 87–130 (1935)Google Scholar
  35. Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic, London (1967)Google Scholar
  36. Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., Endo, T., Yonekura, K., Hoshino, H., Kawaguchi, J.: Achievement of IKAROS—Japanese deep space solar sail demonstration mission. Acta Astronaut. 82, 183–188 (2013)ADSCrossRefGoogle Scholar
  37. Waters, T., McInnes, C.R.: Periodic orbits above the Ecliptic in the solar sail restricted three-body problem. J. Guid. Control Dyn. 30, 687 (2007)ADSCrossRefGoogle Scholar
  38. Wawrzyniak, G.G., Howell, K.C.: Numerical techniques for generating and refining solar sail trajectories. Adv. Space Res. 48, 1848–1857 (2011)ADSCrossRefGoogle Scholar
  39. West, J.L.: The Geostorm warning mission: enhanced opportunities based on new technology, AAS 04–102. Adv. Astronaut. Sci. 119, 29–42 (2004)Google Scholar
  40. Wintner, A.: Grundlagen einer Genealogie der periodischen Bahnen im restingierten Dreiköerperproblem. Math. Zeitschr. 34, 321–349 (1931)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mathematics, University of PortsmouthLion Gate BuildingPortsmouth, HampshireUK
  2. 2.Advanced Space Concepts Laboratory, Department of Mechanical and Aerospace EngineeringUniversity of StrathclydeGlasgowUK
  3. 3.CEMPSUniversity of ExeterExeterUK

Personalised recommendations