Skip to main content
Log in

Gravitational lunar capture based on bicircular model in restricted four body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Gravitational capture is a useful phenomenon in the design of the low energy transfer (LET) orbit for a space mission. In this paper, gravitational lunar capture based on the Sun–Earth–Moon bicircular model (BCM) in the restricted four body problem is studied. By the mechanical analysis in the space near the Moon, we first propose a new parameter \(k\), the corrected ratio of the radial force, to investigate the influence of the radial force on the capture eccentricity in the BCM. Then, a parametric analysis is performed to detect the influences on the corrected ratio \(k\). Considering the restriction of time-of-flight and corrected ratio, we investigate, respectively, the minimum capture eccentricity and the corrected minimum capture eccentricity. Via numerical analysis, we discover two special regions on the sphere of capture, in which the capture point possesses the global minimum capture eccentricity and corrected capture eccentricity. They denote the optimal capture regions in terms of minimizing the fuel consumption of the maneuver. According to the results obtained, some suggestions on the design of the LET orbit are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Andreu, M.A.: Preliminary study on the translunar halo orbits of the real Earth–Moon system. Celest. Mech. Dyn. Astron. 86(2), 107–130 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Astakhov, S., Burbanks, A., Wiggins, S., Farrelly, D.: Order and chaos in stellar and planetary systems. In: ASP Conference Series, vol. 316, 80–85 (2004)

  • Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics, pp. 333–334. Dover, New York (1971)

    Google Scholar 

  • Belbruno, E.A.: Lunar capture orbits, a method of constructing Earth Moon trajectories and the lunar GAS mission. AIAA-87-1054. In: 19th AIAA/DGLR/JSASS International Electric Propulsion Conference, Colorado Springs, CO (1987)

  • Belbruno, E.A.: Examples of the nonlinear dynamics of ballistic capture and escape in the Earth–Moon system. AIAA-90-2896. In: AIAA Astrodynamics Conference, Portland, OR (1990)

  • Belbruno, E.A.: Ballistic lunar capture transfer using the fuzzy boundary and solar perturbations: a survey. In: Proceedings for the International Congress of SETI Sail and Astrodynamics, Turin, Italy (1992)

  • Belbruno, E.A., Miller, J.K.: A Ballistic Lunar Capture Trajectory for Japanese Spacecraft Hiten. Jet Propulsion Lab, JPL IOM 312/90.4-1731, Internal Document, Pasadena, CA (1990)

  • Castelli, R.: Regions of prevalence in the coupled restricted three-body problems approximation. Commun. Nonlinear Sci. Numer. Simul. 17(2), 804–816 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Castellà, E., Jorba, À.: On the vertical families of two-dimensional tori near the triangular points of the bicircular problem. Celest. Mech. Dyn. Astron. 76(1), 35–54 (2000)

    Article  MATH  ADS  Google Scholar 

  • Circi, C., Teofilatto, P.: Effect of planetary eccentricity on ballistic capture in the solar system. Celest. Mech. Dy. Astron. 93, 69–86 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Fantino, E., Gomez, G., Masdemont, J.J., Ren, Y.: A note on libration point orbits, temporary capture and low-energy transfers. Acta Astronaut. 67, 1038–1052 (2010)

    Article  ADS  Google Scholar 

  • Hamilton, D.P., Burns, J.A.: Orbital stability zones about asteroids. II—the destabilizing effects of eccentric orbits and of solar radiation. Icarus 96, 43–64 (1992)

    Article  ADS  Google Scholar 

  • Hyeraci, N., Topputo, F.: Method to design ballistic capture in the elliptic restricted three-body problem. J. Guid. Control Dyn. 33(6), 1814–1823 (2010)

    Article  ADS  Google Scholar 

  • Krish, V., Belbruno, E.A., Hollister, W.M.: An investigation into critical aspects of a new form of low energy lunar transfer, the Belbruno–Miller trajectories. In: Proceedings of the AIAA/AAS Astrodynamics Conference, AIAA, Washington, DC, pp. 435–444 (1992)

  • Machuy, A.L., Prado, A.F.B.A., Stuchi, T.J.: Numerical study of the time required for the gravitational capture in the bi-circular four-body problem. Adv. Space Res. 40, 118–124 (2007)

    Article  ADS  Google Scholar 

  • Prado, A.F.B.A.: Numerical study and analytic estimation of forces acting in ballistic gravitational capture. J. Guid. Control Dyn. 25(2), 368–375 (2002)

  • Prado, A.F.B.A.: Numerical and analytical study of the gravitational capture in the bicircular problem. Adv. Space Res. 36, 578–584 (2005)

    Article  ADS  Google Scholar 

  • Prado, A.F.B.A., Vieira Neto, E.: Study of the gravitational capture in the elliptical restricted three-body problem. J. Astronaut. Sci. 54(3 & 4), 567–582 (2006)

  • Qi, R., Xu, S.J., Zhang, Y., Wang, Y.: Earth-to-Moon low energy transfer using time-dependent invariant manifolds. In: AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, MN (2012)

  • Simó, C., Gómez, G., Jorba, À., Masdemont, J.: The Bicircular Model Near the Triangular Libration Points of the RTBP. From Newton to Chaos, NATO ASI Series, pp. 343–370 (1995)

  • Vieira Neto, E., Prado, A.F.B.A.: Time-of-flight analyses for the gravitational capture maneuver. J. Guid. Control Dyn. 21(1), 122–126 (1998)

  • Yamakawa, H.: On Earth–Moon Transfer Trajectory with Gravitational Capture. Ph.D. Dissertation, University of Tofyo (1992)

  • Zanzottera, A., Mingotti, G., Castelli, R., Dellnitz, M.: Intersecting invariant manifolds in spatial restricted three-body problems: design and optimization of Earth-to-halo transfers in the Sun–Earth–Moon scenario. Commun. Nonlinear Sci. Numer. Simul. 17(2), 832–843 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Xu, S. & Qi, R. Gravitational lunar capture based on bicircular model in restricted four body problem. Celest Mech Dyn Astr 120, 1–17 (2014). https://doi.org/10.1007/s10569-014-9554-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9554-7

Keywords

Navigation