Solving Kepler’s equation via Smale’s \(\alpha \)-theory

  • Martín Avendano
  • Verónica Martín-Molina
  • Jorge Ortigas-Galindo
Original Article

Abstract

We obtain an approximate solution \(\tilde{E}=\tilde{E}(e,M)\) of Kepler’s equation \(E-e\sin (E)=M\) for any \(e\in [0,1)\) and \(M\in [0,\pi ]\). Our solution is guaranteed, via Smale’s \(\alpha \)-theory, to converge to the actual solution \(E\) through Newton’s method at quadratic speed, i.e. the \(n\)-th iteration produces a value \(E_n\) such that \(|E_n-E|\le (\frac{1}{2})^{2^n-1}|\tilde{E}-E|\). The formula provided for \(\tilde{E}\) is a piecewise rational function with conditions defined by polynomial inequalities, except for a small region near \(e=1\) and \(M=0\), where a single cubic root is used. We also show that the root operation is unavoidable, by proving that no approximate solution can be computed in the entire region \([0,1)\times [0,\pi ]\) if only rational functions are allowed in each branch.

Keywords

Kepler’s equation Smale’s \(\alpha \)-theory Newton’s method Optimal starter 

References

  1. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. American Institute of Aeronautics and Astronautics, New York (1987)MATHGoogle Scholar
  2. Calvo, M., Elipe, A., Montijano, J.I., Rández, L.: Optimal starters for solving the elliptic Kepler’s equation. Celest. Mech. Dyn. Astron. 115, 143–160 (2013)Google Scholar
  3. Colwell, P.: Solving Kepler’s Equation Over Three Centuries. Willmann-Bell, Richmond, VA (1993)MATHGoogle Scholar
  4. Danby, J.M.A.: The solution of Kepler’s equation III. Celest. Mech. 40, 303–312 (1987)Google Scholar
  5. Danby, J.M.A., Burkardt, T.M.: The solution of Kepler’s equation I. Celest. Mech. 31, 95–107 (1983)Google Scholar
  6. Markley, F.L.: Kepler equation solver. Celest. Mech. Dyn. Astron. 63, 101–111 (1995)Google Scholar
  7. Mikkola, S.: A cubic approximation for Kepler’s equation. Celest. Mech. 40, 329–334 (1987)Google Scholar
  8. Mortari, D., Clochiatti, A.: Solving Kepler’s equation using Bézier curves. Celest. Mech. Dyn. Astron. 99, 45–57 (2007)Google Scholar
  9. Mortari, D., Elipe, A.: Solving Kepler’s equations using implicit functions. Celest. Mech. Dyn. Astron. 118, 1–11 (2014)Google Scholar
  10. Ng, E.W.: A general algorithm for the solution of Kepler’s equation for elliptic orbits. Celest. Mech. 10, 243–249 (1979)Google Scholar
  11. Nijenhuis, A.: Solving Kepler’s equation with high efficiency and accuracy. Celest. Mech. Dyn. Astron. 51, 319–330 (1991)Google Scholar
  12. Odell, A.W., Gooding, R.H.: Procedures for solving Kepler’s equation. Celest. Mech. 38, 307–334 (1986)Google Scholar
  13. Palacios, M.: Kepler equation and accelerated Newton method. J. Comput. App. Math. 138, 335–346 (2002)ADSCrossRefMATHMathSciNetGoogle Scholar
  14. Smale, S.: Newton’s method estimates from data at one point. In Ewing, R., Gross, K., Martin, C. (eds.) The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics. Springer, New York (1986)Google Scholar
  15. Taff, L.G., Brennan, T.A.: On solving Kepler’s equation. Celest. Mech. Dyn. Astron. 46, 163–176 (1989)Google Scholar
  16. Wang, X., Han, D.: On dominating sequence method in the point estimate and Smale’s theorem. Sci. China Ser. A 33(2), 135–144 (1990)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Martín Avendano
    • 1
    • 2
  • Verónica Martín-Molina
    • 1
    • 2
  • Jorge Ortigas-Galindo
    • 1
    • 2
  1. 1.Centro Universitario de la Defensa SaragossaSpain
  2. 2.IUMAUniversidad de ZaragozaSaragossaSpain

Personalised recommendations