Skip to main content
Log in

Computing derivatives of a gravity potential by using automatic differentiation

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

A new method, based on automatic differentiation technique, has been proposed in this paper to compute the derivatives of the gravity potential. Using this method we can obtain derivatives up to any order. Instead of explicit expressions of the derivatives we use an iterative scheme to simultaneously compute the value of all the desired derivatives. The algorithm here presented can be easily parallelized by using OpenMP with the consequent improvement in CPU-time efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abad, A., Barrio, R., Blesa, F., Rodríguez, M.: Algorithm 924: TIDES, a Taylor series integrator for differential equationS. ACM Trans. Math. Softw. 39(1), 1–28 (2012)

    Article  Google Scholar 

  • Balmino, G., Barriot, J., Koop, R., Middel, B., Thong, N., Vermeer, M.: Simulation of gravity gradients: a comparison study. Bull. Géodésique 65, 218–229 (1991)

    Article  ADS  Google Scholar 

  • Chandra, R., Dagum, L., Maydan, D., Kohr, D.: Parallel Programming in OpenMP. Morgan Kaufmann Publishers, Burlington (2001)

    Google Scholar 

  • Cunningham, L.: On the computation of the spherical harmonic terms needed during the numerical integration of the orbital motion of an artificial satellite. Celest. Mech. 2(2), 207–216 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Fantino, E., Casotto, S.: Methods of harmonic synthesis for global geopotential models and their first-, second- and third-order gradients. J. Geodesy 83(7), 595–619 (2008)

    Article  ADS  Google Scholar 

  • Fukushima, T.: Parallel computation of satellite orbit acceleration. Comput. Geosci. 49, 1–9 (2012)

    Article  ADS  Google Scholar 

  • Griewank, A., Walther, A.: Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation, 2nd edn. SIAM, Society for Industrial and Applied Mathematics (2008)

  • Heiskanen, V., Moritz, H.: Theory of satellite geodesy. Blaisdell Publ Comp, Waltham, MA (1967)

    Google Scholar 

  • Konopliv, A.S., Asmar, S.W., Carranza, E., Sjogren, W.L., Yuan, D.N.: Recent gravity models as a result of the Lunar prospector mission. Icarus 150, 1–18 (2001)

    Article  ADS  Google Scholar 

  • Keller, W., Sharifi, M.: Satellite gradiometry using a satellite pair. J. Geodesy 78(9), 544–557 (2005)

    Article  ADS  Google Scholar 

  • Lemoine, F. G., et al. : The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA Tech. Publ., TP-1998-206861, NASA Goddard Space Flight Cent., Washington, DC (1998)

  • Lemoine, F.G., et al.: An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res. 106(10), 23359–23376 (2001)

    Article  ADS  Google Scholar 

  • Lundberg, J.B., Schutzf, B.E.: Recursion formulas of Legendre functions use with nonsingular geopotential models. J. Guid. Control Dyn. 11(1), 31–38 (1988)

    Google Scholar 

  • Metris, G., Jin, X., Wytrzyszczak, I.: Derivatives of the gravity potential with respect to rectangular coordinates. Celest. Mech. Dyn. Astron. 71, 137–151 (1999)

    Article  ADS  MATH  Google Scholar 

  • Neidinger, R.D.: An efficient method for the numerical evaluation of partial derivatives of arbitrary order. ACM Trans. Math. Softw. 18(2), 159–173 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Pines, S.: Uniform representation of the gravitational potential and its derivatives. AIAA J. 11, 1508–1511 (1973)

    Article  ADS  MATH  Google Scholar 

  • Qinchang, L., Yuan, L.: Fast computation of satellite gravitational gradient. Celest. Mech. Dyn. Astron. 71, 157–166 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Pavlis, N.K., Holmes, S.A., Kenyon, S., Factor, J.K.: The development and evaluation of the earth gravitational model 2008 (EGM2008). J. Geophys. Res. 117, B04406 (2012)

    Article  ADS  Google Scholar 

  • Rall, L.B., Corliss, G.F.: An introduction to automatic differentiation. In: Berz, M., Bischof, C., Griewank, A. (eds.) Computational Differentiation: Techniques, Applications, and Tools, pp. 1–17 (1996)

  • Tapley, B.D., et al.: The joint gravity model-3. J. Geophys. Res. 101(B12), 28029–28049 (1996)

    Article  ADS  Google Scholar 

  • Tsukanov, I., Hall, M.: Data structure and algorithms for fast automatic differentiation. Int. J. Numer. Methods Eng. 56(13), 1949–1972 (2003)

    Article  MATH  Google Scholar 

  • Xiao, H., Lu, Y.: Parallel computation for spherical harmonic synthesis and analysis. Comput. Geosci. 33(3), 311–317 (2007)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Spanish Ministry of Science and Technology project MTM2012-31883, and the Bolivarian Republic of Venezuela MPPCTI/FIDETEL project FID-003-2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Abad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abad, A., Lacruz, E. Computing derivatives of a gravity potential by using automatic differentiation. Celest Mech Dyn Astr 117, 187–200 (2013). https://doi.org/10.1007/s10569-013-9505-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9505-8

Keywords

Navigation