Abstract
Asteroids and comets are of strategic importance for science in an effort to understand the formation, evolution and composition of the Solar System. Near-Earth Objects (NEOs) are of particular interest because of their accessibility from Earth, but also because of their speculated wealth of material resources. The exploitation of these resources has long been discussed as a means to lower the cost of future space endeavours. In this paper, we consider the currently known NEO population and define a family of so-called Easily Retrievable Objects (EROs), objects that can be transported from accessible heliocentric orbits into the Earth’s neighbourhood at affordable costs. The asteroid retrieval transfers are sought from the continuum of low energy transfers enabled by the dynamics of invariant manifolds; specifically, the retrieval transfers target planar, vertical Lyapunov and halo orbit families associated with the collinear equilibrium points of the Sun–Earth Circular Restricted Three Body problem. The judicious use of these dynamical features provides the best opportunity to find extremely low energy Earth transfers for asteroid material. A catalogue of asteroid retrieval candidates is then presented. Despite the highly incomplete census of very small asteroids, the ERO catalogue can already be populated with 12 different objects retrievable with less than 500 m/s of \(\Delta v\). Moreover, the approach proposed represents a robust search and ranking methodology for future retrieval candidates that can be automatically applied to the growing survey of NEOs.
This is a preview of subscription content,
to check access.









Similar content being viewed by others
Notes
http://www.nasa.gov/topics/solarsystem/features/osiris-rex.html (last accessed 02/05/12).
http://ssd.jpl.nasa.gov/sbdb.cgi (last accessed 27/07/12).
http://saturn.jpl.nasa.gov/multimedia/products/pdfs/cassini_msn_overview.pdf (last accessed 05/09/12).
References
Abell, P.A., Barbee, B.W., et al.: The near-earth object human space flight accessible targets study (NHATS) list of near-earth asteroids: identifying potential targets for future exploration, NASA (2012)
Adamo, D.R., Giorgini, J.D., et al.: Asteroid destinations accessible for human exploration: a preliminary survey in mid-2009. J. Spacecr. Rockets 47(6), 994–1002 (2010)
Alessi, E.M.: The role and usage of libration point orbits in the Earth–Moon system. Ph.D Thesis, Departament de Matemàtica Aplicada i Anàlisi. Barcelona, Universitat de Barcelona (2010)
Augustine, N.R., Austin, W.M., et al.: Seeking a human spaceflight program worthy of a Great Nation. Review of U.S., Human Spaceflight Plans Committee (2009)
Baoyin, H.-X., Chen, Y., et al.: Capturing near earth objects. Res. Astron. Astrophys. 10(6), 587–598 (2010)
Barbee, B.W., Espositoy, T., et al.: A comprehensive ongoing survey of the near-earth asteroid population for human mission accessibility. AIAA Guidance, Navigation, and Control Conference. Toronto, Ontario, Canada (2010)
Belbruno, E., Marsden, B.G.: Resonance hopping in comets. Astron. J. 113(4), 1433–1444 (1997)
Bombardelli, C., Urrutxuay, H., et al.: The SIROCO asteroid deflection demonstrator. AAS/AIAA Space Flight Mechanics Meeting, Charleston, South Carolina (2012)
Brasser, R., Wiegert, P.: Asteroids on Earth-like orbits and their origin. Mon Notices R Astron Soc 386, 2031–2038 (2008)
Brophy, J., Culick, F., et al.: Asteroid retrieval feasibility study. Pasadena, California, Keck Institute for Space Studies, Califonia Institute of Technology, JPL (2012)
Brophy, J.R., Gershman, R., et al.: Asteroid return mission feasibility study. Workshop: asteroid retrieval mission study. California Institute of Technology, Pasadena, CA (2011)
Canalias, E., Masdemont, J.J.: Homoclinic and heteroclinic transfer trajectories between Lyapunov orbits in the Sun–Earth and Earth–Moon systems. AIMS Discret Continuous Dyn Syst Ser A (DCDS-A) 14(2), 261–279 (2006)
Chesley, S.R., Chodas, P.W., et al.: Quantifying the risk posed by potential Earth impacts. Icarus 159, 423–432 (2002)
Chodas, P.W., Chesley, S.R.: 2000 SG344: the story of a potential Earth impactor. Bull Am Astron Soc 33, 1196 (2001)
Edward, T.L., Stanley, G.L.: Gravitational tractor for towing asteroids. Nature 438, 177–178 (2005)
Farquhar, R.W.: Station-keeping in the vicinity of collinear libration points with an application to a Lunar communications problem. Space Flight Mechanics, Science and Technology Series, vol. 11. New York, American Astronautical Society, pp. 519–535 (1967)
Gómez, G., Llibre, J., et al.: Dynamics and Mission Design Near Libration Point Orbits—Fundamentals: The Case of Collinear Libration Points. World Scientific, Singapore (2000)
Gómez, G., Mondelo, J.M.: The dynamics around the collinear equilibrium points of the RTBP. Phys D Nonlinear Phenomena 157(4), 283–321 (2001)
Granvik, M., Vaubaillon, J., et al.: The population of natural Earth satellites. Icarus 218(1), 262–277 (2011)
Greenstreet, S., Ngo, H., et al.: The orbital distribution of near-Earth objects inside Earth’s orbit. Icarus 217, 355–366 (2011)
Hasnain, Z., Lamb, C., et al.: Capturing near-Earth asteroids around Earth. Acta Astronautica 81, 523–531 (2012)
Hénon, M.: Vertical stability of periodic orbits in the restricted problem, I. Equal masses. Astron. Astrophys. 28, 415–426 (1973)
Hopkins, J., Dissel, A., et al.: Plymouth Rock: An Early Human Mission to Near Earth Asteroids Using Orion Spacecraft. Lockheed Martin Corporation (2010)
Howell, K.C.: Families of orbits in the vicinity of collinear libration points. J. Astronaut. Sci. 49(1), 107–125 (2001)
Howell, K.C., Pernicka, H.J.: Stationkeeping method for libration point trajectories. J. Guid. Control Dyn. 16(1), 151–159 (1993)
Kawaguchi, J., Fujiwara, A., et al.: Hayabusa—its technology and science accomplishment summary and Hayabusa-2. Acta Astronautica 62(10–11), 639–647 (2008)
Kleiman, L.A.: Project Icarus: An MIT Student Project in Systems Engineering. The MIT Press, Cambridge, Massachusetts (1968)
Koon, W.S., Lo, M.W., et al.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469 (2000)
Koon, W.S., Lo, M.W., et al.: Dynamical systems, the three-body problem and space mission design. Marsden Books, Online book (2008)
Kwiatkowski, T., Kryszczynska, A., et al.: Photometry of 2006 RH120: an asteroid temporary captured into a geocentric orbit. Astron. Astrophys. 495, 967–974 (2009)
Landau, D., Strange, N.: Near-Earth asteroids accesible to human exploration with high-power electric propulsion. AAS/AIAA Astrodynamics Specialist Conference. Girdwood, Alaska (2011)
Lewis, J.S.: Mining the sky: untold riches from asteroids, comets and planets. Helix Books/Perseus Books, Reading, Massachusetts (1996)
Lo, M.W., Ross, S.D.: Low-energy interplanetary transfers using lagrangian points. NASA Tech Brief 23 (1999)
Lo, M.W., Ross, S.D.: The Lunar \(\text{ L }_{1}\) gateway: portal to the stars and beyond. AIAA Space 2001 Conference. Albuquerque, New Mexico (2001)
Michel, P., Zappala, V., et al.: Estimated abundance of atens and asteroids evolving on orbits between Earth and Sun. Icarus 143, 421–424 (2000)
Murdoch, N., Abell, P., et al.: Asteroid impact and deflection assesment (AIDA) mission rationale interim report (2012)
Richardson, D.L.: Halo orbit formulation for the ISEE-3 mission. J. Guid. Control Dyn. 3(6), 543–548 (1980)
Sanchez, J.P., Colombo, C.: Impact hazard protection efficiency by a small kinetic impactor. J. Spacecr. Rockets 50(2), 380–393 (2013)
Sanchez, J.P., García-Yárnoz, D., et al.: Near-Earth asteroid resource accessibility and future capture missions opportunities. Global Space Exploration Conference 2012, Washington, DC, USA, IAF (2012)
Sanchez, J.P., McInnes, C.R.: Asteroid resource map for near-Earth space. J. Spacecr. Rockets 48(1), 153–165 (2011a)
Sanchez, J.P., McInnes, C.R.: On the Ballistic capture of asteroids for resource utilization. 62nd International Astronautical Congress. Cape Town, SA, IAF (2011b)
Sanchez, J.P., McInnes, C.R.: Available asteroid resources in the Earth’s neighbourhood. In: Badescu, V. (ed.) Asteroids. Prospective Energy and Material Resources. Springer-Verlag (2013, in Press)
Scheeres, D.J., Schweickart, R.L.: The mechanics of moving asteroids. Planetary Defense Conference. Orange County, California, AIAA (2004)
Shapiro, I.I., A’Hearn, M., et al.: Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies, vol. 153. National Research Council, Washington, DC (2010)
Simó, C., Gómez, G., et al.: On the optimal station keeping control of halo orbits. Acta Astronautica 15(6–7), 391–397 (1987)
Szebehely, V.: Theory of Orbits. Academic Press, New York, New York (1967)
Tancredi, G.: An asteroid in a Earth-like orbit. Celest. Mech. Dyn. Astron. 69(1–2), 119–132 (1997)
Tsiolkovsky, K.E.: The exploration of cosmic space by means of reaction devices. Sci Rev (5) (1903)
Vasile, M., Locatelli, M.: A hybrid multiagent approach for global trajectory optimization. J. Glob. Optim. 44(4), 461–479 (2009)
Veres, P., Jedicke, R., et al.: Detection of Earth-impacting asteroids with the next generation all-sky surveys. Icarus 203(2), 472–485 (2009)
Zagouras, C., Markellos, V.V.: Axisymmetric periodic orbits of restricted problem in three dimensions. Astron. Astrophys. 59, 79–89 (1977)
Acknowledgments
The authors wish to acknowledge Elisa Maria Alessi for her valuable comments and inputs to this work. The work was carried out making use of the Faculty of Engineering High Performance Computer Facility, University of Strathclyde; and was supported by European Research Council grant 227571 (VISIONSPACE).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
García Yárnoz, D., Sanchez, J.P. & McInnes, C.R. Easily retrievable objects among the NEO population. Celest Mech Dyn Astr 116, 367–388 (2013). https://doi.org/10.1007/s10569-013-9495-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10569-013-9495-6