Skip to main content
Log in

Easily retrievable objects among the NEO population

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Asteroids and comets are of strategic importance for science in an effort to understand the formation, evolution and composition of the Solar System. Near-Earth Objects (NEOs) are of particular interest because of their accessibility from Earth, but also because of their speculated wealth of material resources. The exploitation of these resources has long been discussed as a means to lower the cost of future space endeavours. In this paper, we consider the currently known NEO population and define a family of so-called Easily Retrievable Objects (EROs), objects that can be transported from accessible heliocentric orbits into the Earth’s neighbourhood at affordable costs. The asteroid retrieval transfers are sought from the continuum of low energy transfers enabled by the dynamics of invariant manifolds; specifically, the retrieval transfers target planar, vertical Lyapunov and halo orbit families associated with the collinear equilibrium points of the Sun–Earth Circular Restricted Three Body problem. The judicious use of these dynamical features provides the best opportunity to find extremely low energy Earth transfers for asteroid material. A catalogue of asteroid retrieval candidates is then presented. Despite the highly incomplete census of very small asteroids, the ERO catalogue can already be populated with 12 different objects retrievable with less than 500 m/s of \(\Delta v\). Moreover, the approach proposed represents a robust search and ranking methodology for future retrieval candidates that can be automatically applied to the growing survey of NEOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.planetaryresources.com/.

  2. http://www.nasa.gov/topics/solarsystem/features/osiris-rex.html (last accessed 02/05/12).

  3. http://ssd.jpl.nasa.gov/sbdb.cgi (last accessed 27/07/12).

  4. http://saturn.jpl.nasa.gov/multimedia/products/pdfs/cassini_msn_overview.pdf (last accessed 05/09/12).

References

  • Abell, P.A., Barbee, B.W., et al.: The near-earth object human space flight accessible targets study (NHATS) list of near-earth asteroids: identifying potential targets for future exploration, NASA (2012)

  • Adamo, D.R., Giorgini, J.D., et al.: Asteroid destinations accessible for human exploration: a preliminary survey in mid-2009. J. Spacecr. Rockets 47(6), 994–1002 (2010)

    Article  ADS  Google Scholar 

  • Alessi, E.M.: The role and usage of libration point orbits in the Earth–Moon system. Ph.D Thesis, Departament de Matemàtica Aplicada i Anàlisi. Barcelona, Universitat de Barcelona (2010)

  • Augustine, N.R., Austin, W.M., et al.: Seeking a human spaceflight program worthy of a Great Nation. Review of U.S., Human Spaceflight Plans Committee (2009)

  • Baoyin, H.-X., Chen, Y., et al.: Capturing near earth objects. Res. Astron. Astrophys. 10(6), 587–598 (2010)

    Article  ADS  Google Scholar 

  • Barbee, B.W., Espositoy, T., et al.: A comprehensive ongoing survey of the near-earth asteroid population for human mission accessibility. AIAA Guidance, Navigation, and Control Conference. Toronto, Ontario, Canada (2010)

  • Belbruno, E., Marsden, B.G.: Resonance hopping in comets. Astron. J. 113(4), 1433–1444 (1997)

    Article  ADS  Google Scholar 

  • Bombardelli, C., Urrutxuay, H., et al.: The SIROCO asteroid deflection demonstrator. AAS/AIAA Space Flight Mechanics Meeting, Charleston, South Carolina (2012)

  • Brasser, R., Wiegert, P.: Asteroids on Earth-like orbits and their origin. Mon Notices R Astron Soc 386, 2031–2038 (2008)

    Article  ADS  Google Scholar 

  • Brophy, J., Culick, F., et al.: Asteroid retrieval feasibility study. Pasadena, California, Keck Institute for Space Studies, Califonia Institute of Technology, JPL (2012)

  • Brophy, J.R., Gershman, R., et al.: Asteroid return mission feasibility study. Workshop: asteroid retrieval mission study. California Institute of Technology, Pasadena, CA (2011)

  • Canalias, E., Masdemont, J.J.: Homoclinic and heteroclinic transfer trajectories between Lyapunov orbits in the Sun–Earth and Earth–Moon systems. AIMS Discret Continuous Dyn Syst Ser A (DCDS-A) 14(2), 261–279 (2006)

    MathSciNet  MATH  Google Scholar 

  • Chesley, S.R., Chodas, P.W., et al.: Quantifying the risk posed by potential Earth impacts. Icarus 159, 423–432 (2002)

    Article  ADS  Google Scholar 

  • Chodas, P.W., Chesley, S.R.: 2000 SG344: the story of a potential Earth impactor. Bull Am Astron Soc 33, 1196 (2001)

    ADS  Google Scholar 

  • Edward, T.L., Stanley, G.L.: Gravitational tractor for towing asteroids. Nature 438, 177–178 (2005)

    Article  Google Scholar 

  • Farquhar, R.W.: Station-keeping in the vicinity of collinear libration points with an application to a Lunar communications problem. Space Flight Mechanics, Science and Technology Series, vol. 11. New York, American Astronautical Society, pp. 519–535 (1967)

  • Gómez, G., Llibre, J., et al.: Dynamics and Mission Design Near Libration Point Orbits—Fundamentals: The Case of Collinear Libration Points. World Scientific, Singapore (2000)

    Google Scholar 

  • Gómez, G., Mondelo, J.M.: The dynamics around the collinear equilibrium points of the RTBP. Phys D Nonlinear Phenomena 157(4), 283–321 (2001)

    Article  ADS  MATH  Google Scholar 

  • Granvik, M., Vaubaillon, J., et al.: The population of natural Earth satellites. Icarus 218(1), 262–277 (2011)

    Article  ADS  Google Scholar 

  • Greenstreet, S., Ngo, H., et al.: The orbital distribution of near-Earth objects inside Earth’s orbit. Icarus 217, 355–366 (2011)

    Article  ADS  Google Scholar 

  • Hasnain, Z., Lamb, C., et al.: Capturing near-Earth asteroids around Earth. Acta Astronautica 81, 523–531 (2012)

    Article  ADS  Google Scholar 

  • Hénon, M.: Vertical stability of periodic orbits in the restricted problem, I. Equal masses. Astron. Astrophys. 28, 415–426 (1973)

    ADS  MATH  Google Scholar 

  • Hopkins, J., Dissel, A., et al.: Plymouth Rock: An Early Human Mission to Near Earth Asteroids Using Orion Spacecraft. Lockheed Martin Corporation (2010)

  • Howell, K.C.: Families of orbits in the vicinity of collinear libration points. J. Astronaut. Sci. 49(1), 107–125 (2001)

    MathSciNet  Google Scholar 

  • Howell, K.C., Pernicka, H.J.: Stationkeeping method for libration point trajectories. J. Guid. Control Dyn. 16(1), 151–159 (1993)

    Article  ADS  Google Scholar 

  • Kawaguchi, J., Fujiwara, A., et al.: Hayabusa—its technology and science accomplishment summary and Hayabusa-2. Acta Astronautica 62(10–11), 639–647 (2008)

    Article  ADS  Google Scholar 

  • Kleiman, L.A.: Project Icarus: An MIT Student Project in Systems Engineering. The MIT Press, Cambridge, Massachusetts (1968)

    Google Scholar 

  • Koon, W.S., Lo, M.W., et al.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Koon, W.S., Lo, M.W., et al.: Dynamical systems, the three-body problem and space mission design. Marsden Books, Online book (2008)

  • Kwiatkowski, T., Kryszczynska, A., et al.: Photometry of 2006 RH120: an asteroid temporary captured into a geocentric orbit. Astron. Astrophys. 495, 967–974 (2009)

    Article  ADS  Google Scholar 

  • Landau, D., Strange, N.: Near-Earth asteroids accesible to human exploration with high-power electric propulsion. AAS/AIAA Astrodynamics Specialist Conference. Girdwood, Alaska (2011)

  • Lewis, J.S.: Mining the sky: untold riches from asteroids, comets and planets. Helix Books/Perseus Books, Reading, Massachusetts (1996)

  • Lo, M.W., Ross, S.D.: Low-energy interplanetary transfers using lagrangian points. NASA Tech Brief 23 (1999)

  • Lo, M.W., Ross, S.D.: The Lunar \(\text{ L }_{1}\) gateway: portal to the stars and beyond. AIAA Space 2001 Conference. Albuquerque, New Mexico (2001)

  • Michel, P., Zappala, V., et al.: Estimated abundance of atens and asteroids evolving on orbits between Earth and Sun. Icarus 143, 421–424 (2000)

    Article  ADS  Google Scholar 

  • Murdoch, N., Abell, P., et al.: Asteroid impact and deflection assesment (AIDA) mission rationale interim report (2012)

  • Richardson, D.L.: Halo orbit formulation for the ISEE-3 mission. J. Guid. Control Dyn. 3(6), 543–548 (1980)

    Article  Google Scholar 

  • Sanchez, J.P., Colombo, C.: Impact hazard protection efficiency by a small kinetic impactor. J. Spacecr. Rockets 50(2), 380–393 (2013)

    Article  ADS  Google Scholar 

  • Sanchez, J.P., García-Yárnoz, D., et al.: Near-Earth asteroid resource accessibility and future capture missions opportunities. Global Space Exploration Conference 2012, Washington, DC, USA, IAF (2012)

  • Sanchez, J.P., McInnes, C.R.: Asteroid resource map for near-Earth space. J. Spacecr. Rockets 48(1), 153–165 (2011a)

  • Sanchez, J.P., McInnes, C.R.: On the Ballistic capture of asteroids for resource utilization. 62nd International Astronautical Congress. Cape Town, SA, IAF (2011b)

  • Sanchez, J.P., McInnes, C.R.: Available asteroid resources in the Earth’s neighbourhood. In: Badescu, V. (ed.) Asteroids. Prospective Energy and Material Resources. Springer-Verlag (2013, in Press)

  • Scheeres, D.J., Schweickart, R.L.: The mechanics of moving asteroids. Planetary Defense Conference. Orange County, California, AIAA (2004)

  • Shapiro, I.I., A’Hearn, M., et al.: Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies, vol. 153. National Research Council, Washington, DC (2010)

  • Simó, C., Gómez, G., et al.: On the optimal station keeping control of halo orbits. Acta Astronautica 15(6–7), 391–397 (1987)

    Article  Google Scholar 

  • Szebehely, V.: Theory of Orbits. Academic Press, New York, New York (1967)

    Google Scholar 

  • Tancredi, G.: An asteroid in a Earth-like orbit. Celest. Mech. Dyn. Astron. 69(1–2), 119–132 (1997)

    Article  ADS  Google Scholar 

  • Tsiolkovsky, K.E.: The exploration of cosmic space by means of reaction devices. Sci Rev (5) (1903)

  • Vasile, M., Locatelli, M.: A hybrid multiagent approach for global trajectory optimization. J. Glob. Optim. 44(4), 461–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Veres, P., Jedicke, R., et al.: Detection of Earth-impacting asteroids with the next generation all-sky surveys. Icarus 203(2), 472–485 (2009)

    Article  ADS  Google Scholar 

  • Zagouras, C., Markellos, V.V.: Axisymmetric periodic orbits of restricted problem in three dimensions. Astron. Astrophys. 59, 79–89 (1977)

    MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Elisa Maria Alessi for her valuable comments and inputs to this work. The work was carried out making use of the Faculty of Engineering High Performance Computer Facility, University of Strathclyde; and was supported by European Research Council grant 227571 (VISIONSPACE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. García Yárnoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Yárnoz, D., Sanchez, J.P. & McInnes, C.R. Easily retrievable objects among the NEO population. Celest Mech Dyn Astr 116, 367–388 (2013). https://doi.org/10.1007/s10569-013-9495-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9495-6

Keywords

Navigation