Robust resolution of Kepler’s equation in all eccentricity regimes

Abstract

In this paper we discuss the resolution of Kepler’s equation in all eccentricity regimes. To avoid rounding off problems we find a suitable starting point for Newton’s method in the hyperbolic case. Then, we analytically prove that Kepler’s equation undergoes a smooth transition around parabolic orbits. This regularity allows us to fix known numerical issues in the near parabolic region and results in a non-singular iterative technique to solve Kepler’s equation for any kind of orbit. We measure the performance and the robustness of this technique by comprehensive numerical tests.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. American Institute of Aeronautics and Astronautics, Reston, VA (1987)

  2. Burkardt, T.M., Danby, J.M.A.: The solutions of Kepler’s equation. II. Celest. Mech. 31, 317–328 (1983)

    Google Scholar 

  3. Calvo, M., Elipe, A., Montijano, J.I., Rández, L.: Optimal starters for solving the elliptic Kepler’s equation. Celest. Mech. Dyn. Astron. 115 (2013). doi:10.1007/s10569-012-9456-5

  4. Colwell, P.: Solving Kepler’s Equation over Three Centuries. Willmann-Bell, Richmond (1993)

    Google Scholar 

  5. Conway, B.A.: An improved algorithm due to Laguerre for the solution of Kepler’s equation. Celest. Mech. 39, 199–211 (1986)

    Google Scholar 

  6. Danby, J.M.A.: The solution of Kepler’s equations—Part three. Celest. Mech. 40, 303–312 (1987)

    ADS  MATH  Article  Google Scholar 

  7. Danby, J.M.A., Burkardt, T.M.: The solution of Kepler’s equation. I. Celest. Mech. 31, 95–107 (1983)

    ADS  MATH  Article  Google Scholar 

  8. Davis, J.J., Mortari, D., Bruccoleri, C.: Sequential solution to Kepler’s equation. Celest. Mech. Dyn. Astron. 108, 59–72 (2010)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  9. Everhart, E., Pitkin, E.T.: Universal variables in the two-body problem. Am. J. Phys. 51, 712–717 (1983)

    ADS  Article  Google Scholar 

  10. Feinstein, S.A., McLaughlin, C.A.: Dynamic discretization method for solving Kepler’s equation. Celest. Mech. Dyn. Astron 96, 49–62 (2006)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  11. Fukushima, T.: A fast procedure solving Kepler’s equation for elliptic case. Astron. J. 112, 2858 (1996)

    ADS  Article  Google Scholar 

  12. Markley, F.L.: Kepler equation solver. Celest. Mech. Dyn. Astron. 63, 101–111 (1995)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  13. Mikkola, S.: A cubic approximation for Kepler’s equation. Celest. Mech. 40, 329–334 (1987)

    ADS  MATH  Article  Google Scholar 

  14. Milani, A., Gronchi, G.F., Farnocchia, D., Knežević, Z., Jedicke, R., Denneau, L., Pierfederici, F.: Topocentric orbit determination: algorithms for the next generation surveys. Icarus 195, 474–492 (2008)

    ADS  Article  Google Scholar 

  15. Mortari, D., Clocchiatti, A.: Solving Kepler’s equation using Bézier curves. Celest. Mech. Dyn. Astron. 99, 45–57 (2007)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  16. Odell, A.W., Gooding, R.H.: Procedures for solving Kepler’s equation. Celest. Mech. 38, 307–334 (1986)

    ADS  MATH  Article  Google Scholar 

  17. Palacios, M.: Kepler equation and accelerated Newton method. J. Comput. Appl. Math. 138, 335–346 (2002)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  18. Schaub, H., Junkins, J.L., Schetz, J.A.: Analytical Mechanics of Space Systems, 2nd edn. American Institute of Aeronautics and Astronautics, Reston, VA (2009)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Davide Farnocchia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Farnocchia, D., Cioci, D.B. & Milani, A. Robust resolution of Kepler’s equation in all eccentricity regimes. Celest Mech Dyn Astr 116, 21–34 (2013). https://doi.org/10.1007/s10569-013-9476-9

Download citation

Keywords

  • Two-body problem
  • Kepler’s equation
  • Newton’s method
  • Starting points
  • Universal variables
  • Near parabolic motion