Skip to main content
Log in

Disintegration process of hierarchical triple systems II: non-small mass third body orbiting equal-mass binary

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The stability limit of coplanar hierarchical triple systems is numerically studied. Systems we investigated consist of two equal mass bodies initially on a circular orbit and third body with various masses, which at the maximum are equal to the mass of the binary. In order to estimate the stability limit, we use an empirically-found fact that the system is quasi-periodic if the initial eccentricity of the outer binary is less than some critical value, otherwise the third body eventually escapes. We make an analytical expression for the stability limit in terms of the ratio of the orbital radii and find that the expression improves the previous criteria. The resultant expression also suggests that the ratio of the orbital radii rapidly approaches to a certain value (e.g. \(\sim \)2, in an initially circular outer binary) as the mass of the third-body tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cincotta, P.M., Simo, C.: Simple tools to study global dynamics in non-axisymmetric galactic potentials—I. Astron. Astrophys. Suppl. Ser. 147, 205–228 (2000)

    Article  ADS  Google Scholar 

  • Cincotta, P.M., Giordano, C.M., Simo, C.: Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Physica D 182, 151–178 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Doolin, S., Blundell, K.M.: The dynamics and stability of circumbinary orbits. Mon. Not. R. Astron. Soc. 418, 2656–2668 (2011)

    Article  ADS  Google Scholar 

  • Froeschle, C., Lega, E., Gonczi, R.: Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67, 41–62 (1997)

    Google Scholar 

  • Georgakarakos, N.: Stability criteria for hierarchical triple systems. Celest. Mech. Dyn. Astron. 100, 151–168 (2008)

    Google Scholar 

  • Golubev, V.G.: Regions where motion is impossible in the three body problem. Doklady Akad. Nauk. SSSR 174, 767–770 (1967)

    Google Scholar 

  • Harrington, R.S.: Planetary orbits in binary stars. Astron. J. 82, 753–756 (1977)

    Article  ADS  Google Scholar 

  • Maffione, N.P., Darriba, L.A., Cincotta, P.M., Giordano, C.M.: A comparison of different indicators of chaos based on the deviation vectors: application to symplectic mappings. Celest. Mech. Dyn. Astron. 111, 285–307 (2011)

    Google Scholar 

  • Marchal, C., Saari, D.G.: Hill regions for the general three-body problem. Celest. Mech. 12, 115–129 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mardling, R.A., Aarseth, S.J.: Dynamics and stability of three-body systems. In: Steves, B.A., Roy, A.E. (eds.) The Dynamics of Small Bodies in the Solar System, A Major Key to Solar System Studies. NATO ASI, vol. 90, pp. 385–392. Kluwer, Dordrecht (1999)

    Google Scholar 

  • Mardling, R.A., Aarseth, S.J.: Tidal interaction in star cluster simlations. Mon. Not. R. Astron. Soc. 321, 398–420 (2011)

    Article  ADS  Google Scholar 

  • Orlov, V.V., Rubinov, A.V., Valtonen, M., Mylläri, A., Zhuchkov, R.: Stability of triple systems. In: Orlov, V.V., Rubinov, A.V. (eds.) Resonances, Stabilization, and Stable Chaos in Hierarchical Triple Systems, pp. 18–26. St. Petersburg State University, St. Petersburg (2008)

  • Pilat-Lohinger, E., Funk, B., Dvorak, R.: Stability limits in double stars. Astron. Astrophys. 400, 1085–1094 (2003)

    Article  ADS  Google Scholar 

  • Saito, M.M., Tanikawa, K.: The rectilinear three-body problem using symbol sequence I. Role of triple collision. Celest. Mech. Dyn. Astron. 98, 95–120 (2007)

    Google Scholar 

  • Saito, M.M., Tanikawa, K., Orlov, V.V.: (Paper I): disintegration process of hierarchical triple systems I. Small-mass third body orbiting equal-mass binary. Celest. Mech. Dyn. Astron. 112, 235–251 (2012)

    Google Scholar 

  • Valtonen, M., Mylläri, A., Orlov, V.V., Rubinov, A.V.: The problem of three stars: stability limit. In: Vesperini, E., Giersz, M., Sills, A. (eds.) Dynamical Evolution of Dense Stellar Systems, Capri, Italy, 5–9 Sept 2007. Proceedings of the International Astronomical Union. IAU Symposium, vol. 246, pp. 209–217. Cambridge University Press, Cambridge (2008)

  • Yoshida, J.: Improved criteria for hyperbolic-elliptic motion in the general three-body problem II. Publ. Astron. Soc. Japan 26, 367–377 (1974)

    ADS  Google Scholar 

  • Zare, K.: The effects of integrals on the totality of solutions of dynamical systems. Celest. Mech. 14, 73–83 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Zare, K.: Bifurcation points in the planar problem of three bodies. Celest. Mech. 16, 35–38 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Saito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, M.M., Tanikawa, K. & Orlov, V.V. Disintegration process of hierarchical triple systems II: non-small mass third body orbiting equal-mass binary. Celest Mech Dyn Astr 116, 1–10 (2013). https://doi.org/10.1007/s10569-013-9474-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9474-y

Keywords

Navigation