A note on the dynamics around the Lagrange collinear points of the Earth–Moon system in a complete Solar System model

Abstract

In this paper we study the dynamics of a massless particle around the L 1,2 libration points of the Earth–Moon system in a full Solar System gravitational model. The study is based on the analysis of the quasi-periodic solutions around the two collinear equilibrium points. For the analysis and computation of the quasi-periodic orbits, a new iterative algorithm is introduced which is a combination of a multiple shooting method with a refined Fourier analysis of the orbits computed with the multiple shooting. Using as initial seeds for the algorithm the libration point orbits of Circular Restricted Three Body Problem, determined by Lindstedt-Poincaré methods, the procedure is able to refine them in the Solar System force-field model for large time-spans, that cover most of the relevant Sun–Earth–Moon periods.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Andreu, M.A.: The quasi-bicircular problem. PhD Thesis, Department of Matemàtica Aplicada i Anàlisi, Universitat de Barcelona (1998)

  2. 2.

    Carpenter, R.J., Folta, D.C., Moreau, M.C., Quinn, D.A.: Libration point navigation concepts supporting the vision for Space exploration. AIAA/AAS Astrodynamics Specialist Conference, Providence, Rhode Island, August 2004, Paper No. AIAA 2004–4747

  3. 3.

    Colombo, G.: The stabilization of an artificial satellite at the inferior conjunction point of the Earth–Moon system. Smithsonian Astrophysical Observatory Special Report, 80 (1961)

  4. 4.

    Conley C.: Low energy transit orbits in the restricted three–body problem. SIAM J. Appl. Math. 16, 732–746 (1968)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Escobal P.: Methods of Astrodynamics. Wiley, New Jersey (1968)

    Google Scholar 

  6. 6.

    Farquhar, R.W.: The control and use of libration point satellites. NASA Technical Report NASA TR R-346 (1970)

  7. 7.

    Folta, D.C., Woodard, M., Pavlak, T., Haapala, A., Howell, K.: Earth–Moon libration stationkeeping: theory, modeling, and operations. 1st IAA Conference on Dynamics and Control of Space Systems, Porto, Portugal, 19–21 March 2012. Paper No. IAA-AAS-DyCoSS1-05-10

  8. 8.

    Gómez G., Mondelo J.M.: The dynamics around the collinear equilibrium points of the RTBP. Phys. D 157(4), 283–321 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Gómez G., Masdemont J.J., C. Simó C.: Quasihalo orbits associated with libration points. J. Astron. Sci. 42(2), 135–176 (1998)

    Google Scholar 

  10. 10.

    Gómez G., Mondelo J.M., Simó C.: A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: numerical tests and examples. DCDS-B 14(1), 41–74 (2010)

    MATH  Article  Google Scholar 

  11. 11.

    Gómez G., Mondelo J.M., Simó C.: A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: analytical error estimates. DCDS-B 14(1), 75–109 (2010)

    MATH  Article  Google Scholar 

  12. 12.

    Gómez G., Masdemont J.J., Mondelo J.M.: Solar system models with a selected set of frequencies. Astron. Astrophys. 390(2), 733–749 (2002)

    ADS  Article  Google Scholar 

  13. 13.

    Hill, K., Parker, J.S., Born, G.H., Lo, M.W.: Low–cost lunar communication and navigation. CCAR White Paper, 5 May 2006

  14. 14.

    Hou X.Y., Liu L.: On quasi-periodic motions around the triangular libration points of the real Earth–Moon system. Celest. Mech. Dyn. Astron. 108(3), 301–313 (2010)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  15. 15.

    Hou X.Y., Liu L.: On quasi-periodic motions around the collinear libration points of the real Earth–Moon system. Celest. Mech. Dyn. Astron. 110(1), 71–98 (2011)

    MathSciNet  ADS  Article  Google Scholar 

  16. 16.

    Howell, K., Ozimek, M.: Low-thrust transfers in the Earth–Moon system including applications to libration point orbits. AAS/AIAA Astrodynamics Specialist Conference, Mackinac Island, Michigan, August 2007, Paper No. AAS 07-343

  17. 17.

    Jorba À, Masdemont J.J.: Dynamics in the center manifold of the restricted three-body problem. Phys. D 132, 189–213 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Lo, M.W., Ross,S.D.: The lunar L 1 gateway: portal to the stars and beyond. AIAA Space Conference, Albuquerque, New Mexico, USA, 28–30 August 2001. Paper No. 2001-4768

  19. 19.

    Masdemont J.J.: High order expansions of invariant manifolds of libration point orbits with applications to mission design. Dyn. Syst. 20, 59–113 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Siegel C.L., Moser J.K.: Lectures on Celestial Mechanics. Springer, Heidelberg (1971)

    MATH  Book  Google Scholar 

  21. 21.

    Standish, E.M.: JPL Planetary and Lunar Ephemerides, DE405/LE405. JPL IOM 312. F-98-048 (1998)

  22. 22.

    Szebehely V.: Theory of Orbits. Academic Press, New York (1967)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yijun Lian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lian, Y., Gómez, G., Masdemont, J.J. et al. A note on the dynamics around the Lagrange collinear points of the Earth–Moon system in a complete Solar System model. Celest Mech Dyn Astr 115, 185–211 (2013). https://doi.org/10.1007/s10569-012-9459-2

Download citation

Keywords

  • Collinear libration point
  • Quasi-periodic orbit
  • Fourier analysis
  • Multiple shooting
  • Solar System restricted n-body problem
  • Earth–Moon system