Celestial Mechanics and Dynamical Astronomy

, Volume 114, Issue 4, pp 387–414 | Cite as

Bodily tides near the 1:1 spin-orbit resonance: correction to Goldreich’s dynamical model

Original Article

Abstract

Spin-orbit coupling is often described in an approach known as “the MacDonald torque”, which has long become the textbook standard due to its apparent simplicity. Within this method, a concise expression for the additional tidal potential, derived by MacDonald (Rev Geophys 2:467–541, 1994), is combined with a convenient assumption that the quality factor Q is frequency-independent (or, equivalently, that the geometric lag angle is constant in time). This makes the treatment unphysical because MacDonald’s derivation of the said formula was, very implicitly, based on keeping the time lag frequency-independent, which is equivalent to setting Q scale as the inverse tidal frequency. This contradiction requires the entire MacDonald treatment of both non-resonant and resonant rotation to be rewritten. The non-resonant case was reconsidered by Efroimsky and Williams (Cel Mech Dyn Astron 104:257–289, 2009), in application to spin modes distant from the major commensurabilities. In the current paper, we continue this work by introducing the necessary alterations into the MacDonald-torque-based model of falling into a 1-to-1 resonance. (The original version of this model was offered by Goldreich (Astron J 71:1–7, 1996). Although the MacDonald torque, both in its original formulation and in its corrected version, is incompatible with realistic rheologies of minerals and mantles, it remains a useful toy model, which enables one to obtain, in some situations, qualitatively meaningful results without resorting to the more rigorous (and complicated) theory of Darwin and Kaula. We first address this simplified model in application to an oblate primary body, with tides raised on it by an orbiting zero-inclination secondary. (Here the role of the tidally-perturbed primary can be played by a satellite, the perturbing secondary being its host planet. A planet may as well be the perturbed primary, its host star acting as the tide-raising secondary). We then extend the model to a triaxial primary body experiencing both a tidal and a permanent-figure torque exerted by an orbiting secondary. We consider the effect of the triaxiality on both circulating and librating rotation near the synchronous state. Circulating rotation may evolve toward the libration region or toward a spin faster than synchronous (the so-called pseudosynchronous spin). Which behaviour depends on the orbit eccentricity, the triaxial figure of the primary, and the mass ratio of the secondary and primary bodies. The spin evolution will always stall for the oblate case. For libration with a small amplitude, expressions are derived for the libration frequency, damping rate, and average orientation. Importantly, the stability of pseudosynchronous spin hinges upon the dissipation model. Makarove and Efroimsky (Astrophys J, 2012) have found that a more realistic tidal dissipation model than the corrected MacDonald torque makes pseudosynchronous spin unstable. Besides, for a sufficiently large triaxiality, pseudosynchronism is impossible, no matter what dissipation model is used.

Keywords

Bodily tides Land tides Moon Libration Spin-orbit resonance Planetary satellites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.A. (ed.): Handbook of mathematical functions. The National Bureau of Standards, Applied Mathematics Series, Vol. 55, pp. 332. US Government Printing Office, Washington DC (1972)Google Scholar
  2. Arfken G.B., Weber H.J.: Mathematical Methods for Physicists, pp. 723. Academic Press, Boston (1995)Google Scholar
  3. Castillo-Rogez, J.C., Efroimsky, M., Lainey, V.: The tidal history of Iapetus. Dissipative spin dynamics in the light of a refined geophysical model. J. Geophys. Res Planets 116(E9), id. E09008 (2011). doi:10.1029/2010JE003664
  4. Correia A.C.M., Laskar J.: Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature 429, 848–850 (2004)ADSCrossRefGoogle Scholar
  5. Correia A.C.M., Laskar J.: Mercury’s capture into the 3/2 spin-orbit resonance, including the effect of core-mantle friction. Icarus 201, 1–11 (2009)ADSCrossRefGoogle Scholar
  6. Correia, A.C.M., Boué, G., Laskar, J.: Pumping the eccentricity of exoplanets by tidal effect. Submitted to the Astrophys. J. Lett. arXiv:1111.5486 (2011)Google Scholar
  7. Darwin, G.H.: On the precession of a viscous spheroid and on the remote history of the Earth. Philos. Trans. R. Soc. Lond. 170, 447–530 (1879). http://www.jstor.org/view/02610523/ap000081/00a00010/
  8. Darwin, G.H.: On the secular change in the elements of the orbit of a satellite revolving about a tidally distorted planet. Philos. Trans. R. Soc. Lond. 171, 713–891. http://www.jstor.org/view/02610523/ap000082/00a00200
  9. Dobrovolskis A.: Spin states and climates of eccentric exoplanets. Icarus 192, 1–23 (2007)ADSCrossRefGoogle Scholar
  10. Eckhardt D.H.: Passing through resonance: the excitation and dissipation of the lunar free libration in longitude. Celest. Mech. Dyn. Astron. 57, 307–324 (1993)ADSCrossRefMATHGoogle Scholar
  11. Efroimsky, M.: Bodily tides near spin-orbit resonances. Celest. Mech. Dyn. Astron. 112, 283–330 (2012a). doi:10.1007/s10569-011-9397-4. Extended version available at: arXiv:1105.6086
  12. Efroimsky, M.: Tidal dissipation compared to seismic dissipation: in small bodies, earths, and superearths. Astrophys. J. 746(2), article id 150 (2012b). doi:10.1088/0004-637X/746/2/150. arXiv:1105.3936
  13. Efroimsky, M., Lainey, V.: The physics of bodily tides in terrestrial planets, and the appropriate scales of dynamical evolution. J. Geophys. Res. Planets 112, article id. E12003 (2007). doi:10.1029/2007JE002908
  14. Efroimsky, M., Makarov, V.V.: Applicability limitations of a popular formula for the tidal torque. Submited to the Astrophys. J. (2012). arXiv:1209.1615Google Scholar
  15. Efroimsky, M., Williams, J.G.: Tidal torques. A critical review of some techniques. Celest. Mech. Dyn. Astron. 104, 257–289 (2009). doi:10.1007/s10569-009-9204-7. arXiv:0803.3299
  16. Ferraz-Mello S., Rodríguez A., Hussmann H.: Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest. Mech. Dyn. Astron. 101, 171–201 (2008)ADSCrossRefMATHGoogle Scholar
  17. Gerstenkorn H.: Über Gezeitenreibung beim Zweikörperproblem. Zeitschrift für Astrophysik 36, 245–274 (1955)MathSciNetADSMATHGoogle Scholar
  18. Goldreich P.: Final spin states of planets and satellites. Astron. J. 71, 1–7 (1966)ADSCrossRefGoogle Scholar
  19. Goldreich P., Peale S.: Spin-orbit coupling in the Solar system. Astron. J. 71, 425–438 (1966)ADSCrossRefGoogle Scholar
  20. Gooding R.H., Wagner C.A.: On the inclination functions and a rapid stable procedure for their evaluation together with derivatives. Celest. Mech. Dyn. Astron. 101, 247–272 (2008)MathSciNetADSCrossRefGoogle Scholar
  21. Heller, R., Leconte, J., Barnes, R.: Tidal obliquity evolution of potentially habitable planets. Astron. Astrophys. 528, (2011) article id.A27. doi:10.1051/0004-6361/201015809
  22. Hut P.: Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981)ADSMATHGoogle Scholar
  23. Kaula W.M.: Analysis of gravitational and geometric aspects of geodetic utilisation of satellites. Geophys. J. 5, 104–133 (1961)ADSCrossRefMATHGoogle Scholar
  24. Kaula W.M.: Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. 2, 661–684 (1964)ADSCrossRefGoogle Scholar
  25. Kaula, W.M.: Theory of Satellite Geodesy: Applications of Satellites to Geodesy. Blaisdell Publishing Co, Waltham MA. (Re-published in 2006 by Dover. ISBN: 0486414655) (1966)Google Scholar
  26. Kaula W.M.: An Introduction to Planetary Physics. Wiley, NY (1968)Google Scholar
  27. Laskar, J., Correia, A.: The rotation of extra-solar planets. Extrasolar Planets: Today and Tomorrow. ASP Conference Series 321, 401–409 (2004)Google Scholar
  28. MacDonald G.J.F.: Tidal friction. Rev. Geophys. 2, 467–541 (1964)ADSCrossRefGoogle Scholar
  29. Makarov, V.V.: Conditions of passage and entrapment of terrestrial planets in spin-orbit resonances. Astrophys. J. 752 article id. 73 (2012). arXiv:1110.2658Google Scholar
  30. Makarov, V.V., Efroimsky, M.: No pseudosynchronous rotation for terrestrial planets and moons. Submitted to the Astrophys. J. (2012). arXiv:1209.1616Google Scholar
  31. Mignard F.: The evolution of the lunar orbit revisited. I. Moon Planets 20, 301–315 (1979)ADSCrossRefMATHGoogle Scholar
  32. Mignard F.: The evolution of the lunar orbit revisited. II. Moon Planets 23, 185–201 (1980)ADSCrossRefGoogle Scholar
  33. Mignard F.: Evolution of the Martian satellites. Mon. Notices R. Astron. Soc. 194, 365–379 (1981)ADSMATHGoogle Scholar
  34. Murray C.D., Dermott S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  35. Petit, G., Luzum, B. (eds.): IERS Conventions (2010). IERS Technical Note 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main 2010. http://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html
  36. Rambaux N., Williams J.G.: The Moon’s physical librations and determination of their free modes. Celest. Mech. Dyn. Astron. 109, 85–100 (2011). doi:10.1007/s10569-010-9314-2 ADSCrossRefGoogle Scholar
  37. Rodríguez, A., Ferraz-Mello, S., Hussmann, H.: Tidal friction in close-in planets. In: Sun, Y.S, Ferraz-Mello, S., Zhou, J.L. (eds.) Exoplanets: Detection, Formation and Dynamics. Proceedings of the IAU Symposium No 249, pp. 179–186 (2008). doi:10.1017/S174392130801658X
  38. Singer S.F.: The origin of the Moon and geophysical consequences. Geophys. J. R. Astron. Soc. 15, 205–226 (1968)CrossRefGoogle Scholar
  39. Standish, E.M., Williams, J.G.: Orbital ephemerides of the Sun, Moon, and planets, Chapter 8 of the Explanatory Supplement to the Astronautical Almanac, Ed. by P. K. Seidelmann (2012) (in press)Google Scholar
  40. Williams, J.G., Boggs, D.H.: Lunar core and mantle. What Does LLR See? In: Schilliak, S. (ed.) Proceedings of the 16th International Workshop on Laser Ranging, held on 12–17 October 2008 in Poznan, Poland, pp. 101–120 (2009)Google Scholar
  41. Williams, J.G., Boggs, D.H.: In preparation (2012)Google Scholar
  42. Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., Dickey, J.O.: Lunar rotational dissipation in solid-body and molten core. J. Geophys. Res. Planets, 106(E11), 27933–27968 (2001). doi:10.1029/2000JE001396 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2012

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.US Naval ObservatoryWashingtonUSA

Personalised recommendations