Skip to main content
Log in

Explicit adaptive symplectic integrators for solving Hamiltonian systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We consider Sundman and Poincaré transformations for the long-time numerical integration of Hamiltonian systems whose evolution occurs at different time scales. The transformed systems are numerically integrated using explicit symplectic methods. The schemes we consider are explicit symplectic methods with adaptive time steps and they generalise other methods from the literature, while exhibiting a high performance. The Sundman transformation can also be used on non-Hamiltonian systems while the Poincaré transformation can be used, in some cases, with more efficient symplectic integrators. The performance of both transformations with different symplectic methods is analysed on several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanes S., Budd C.J.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 89, 383–405 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Blanes S., Budd C.J.: Adaptive geometric integrators for Hamiltonian problems with approximate scale invariance. SIAM J. Sci. Comput. 26, 1089–1113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Blanes S., Moan P.C.: Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comp. Appl. Math. 142, 313–330 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Blanes S., Casas F., Ros J.: Extrapolation of symplectic integrators. Celest. Mech. Dyn. Astron. 75, 149–161 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Blanes S., Casas F., Murua A.: Splitting and composition methods in the numerical integration of differential equations. Bol. Soc. Esp. Mat. Apl. 45, 89–145 (2008)

    MathSciNet  Google Scholar 

  • Bond S.D., Leimkuhler B.: Time-transformations for reversible variable step-size integration. Numer. Algor. 19, 55–71 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Budd C.J., Leimkuhler B., Piggott M.D.: Scaling invariance and adaptivity. Appl. Numer. Math. 39, 261–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Calvo M.P., Sanz-Serna J.M.: The development of variable-step symplectic integrators, with applications to the two-body problem. SIAM J. Sci. Comput. 14, 936–952 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Calvo M.P., Sanz-Serna J.M., López-Marcos M.A.: Variable step implementations of geometric integrators. Appl. Numer. Math. 28, 1–16 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Chan R.P.K., Murua A.: Extrapolation of symplectic methods for Hamiltonian problems. Appl. Numer. Math. 34, 189–205 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Creutz M., Gocksch A.: Higher-order hybrid Monte Carlo algorithms. Phys. Rev. Lett. 63, 9–12 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  • Gladman B., Duncan M., Candy J.: Symplectic integrators for long-term integrations in celestial mechanics. Celest. Mech. Dyn. Astron. 52, 221–240 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hairer E.: Variable time step integration with symplectic methods. Appl. Numer. Math. 25, 219–227 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Hairer E., Söderlind G.: Explicit, time reversible, adaptive stepsize control. SIAM J. Sci. Comput. 26, 1838–1851 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, vol 31, 2nd edn. Springer, Berlin (2006)

  • Hellström C., Mikkola S.: Explicit algorithmic regularization in the few-body problem for velocity-dependent perturbations. Celest. Mech. Dyn. Astron. 106, 143–156 (2010)

    Article  ADS  MATH  Google Scholar 

  • Holder T., Leimkuhler B., Reich S.: Explicit variable step-size and time-reversible integration. Appl. Numer. Math. 39, 367–377 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Huang W., Leimkuhler B.: The adaptive Verlet method. SIAM J. Sci. Comput. 18, 239–256 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Iserles A.: A First Course in the Numerical Analysis of Differential Equations. 2nd edn. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  • Kinoshita H., Yoshida H., Nakai H.: Symplectic integrators and their application to dynamical astronomy. Celest. Mech. Dyn. Astron. 50, 59–71 (1991)

    Article  ADS  MATH  Google Scholar 

  • Laskar J., Robutel P.: High order symplectic integrators for perturbed Hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Leimkuhler B., Reich S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • McLachlan R.I.: Composition methods in the presence of small parameters. BIT Numer. Math. 35, 258–268 (1995a)

    Article  MathSciNet  MATH  Google Scholar 

  • McLachlan R.I.: On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16(1), 151–168 (1995b)

    Article  MathSciNet  MATH  Google Scholar 

  • McLachlan R.I., Quispel R.G.W.: Splitting methods. Acta Numerica 11, 341–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • McLachlan R.I., Quispel R.G.W.: Geometric integrators for ODEs. J. Phys. A Math. Gen. 39, 5251–5285 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mikkola S.: Practical symplectic methods with time transformation for the few-body problem. Celest. Mech. Dyn. Astron. 67, 145–165 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mikkola S., Aarseth S.: A time-transformed leapfrog scheme. Celest. Mech. Dyn. Astron. 84, 343–354 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mikkola S., Tanikawa K.: Explicit symplectic algorithms for time-transformed Hamiltonians. Celest. Mech. Dyn. Astron. 74, 287–295 (1999)

    Article  ADS  MATH  Google Scholar 

  • Preto M., Tremaine S.: A class of symplectic integrators with adaptive time step for separable Hamiltonian systems. Celest. Mech. Dyn. Astron. 118, 2532–2541 (1999)

    Google Scholar 

  • Sanz-Serna J.M., Calvo M.P.: Numerical Hamiltonian Problems. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  • Skeel R.: Variable step size destabilizes the Störmer/leapfrog/Verlet method. BIT Numer. Math. 33, 172–175 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Sophroniou M., Spaletta G.: Derivation of symmetric composition constants for symmetric integrators. Opt. Methods Softw. 20, 597–613 (2005)

    Article  Google Scholar 

  • Stiefel E.L., Scheifel G.: Linear and Regular Celestial Mechanics. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  • Suzuki M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146(6), 319–323 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  • Wisdom J., Holman M.: Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538 (1991)

    Article  ADS  Google Scholar 

  • Yoshida H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Blanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanes, S., Iserles, A. Explicit adaptive symplectic integrators for solving Hamiltonian systems. Celest Mech Dyn Astr 114, 297–317 (2012). https://doi.org/10.1007/s10569-012-9441-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9441-z

Keywords

Navigation