Skip to main content
Log in

Application of Hamiltonian structure-preserving control to formation flying on a J 2-perturbed mean circular orbit

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The bounded quasi-periodic relative trajectories are investigated in this paper for on-orbit surveillance, inspection or repair, which requires rapid changes in formation configuration for full three-dimensional imaging and unpredictable evolutions of relative trajectories for non-allied spacecraft. A linearized differential equation for modeling J 2 perturbed relative dynamics is derived without any simplified treatment of full short-period effects. The equation serves as a nominal reference model for stationkeeping controller to generate the quasi-periodic trajectories near the equilibrium, i.e., the location of the chief. The developed model exhibits good numerical accuracy and is applicable to an elliptic orbit with small eccentricity inheriting from the osculating conversion of orbital elements. A Hamiltonian structure-preserving controller is derived for the three-dimensional time-periodic system that models the J 2-perturbed relative dynamics on a mean circular orbit. The equilibrium of the system has time-varying topological types and no fixed-dimensional unstable/stable/center manifolds, which are quite different from the two-dimensional time-independent system with a permanent pair of hyperbolic eigenvalues and fixed-dimensions of unstable/stable/ center manifolds. The unstable and stable manifolds are employed to change the hyperbolic equilibrium to elliptic one with the poles assigned on the imaginary axis. The detailed investigations are conducted on the critical controller gain for Floquet stability and the optimal gain for the fuel cost, respectively. Any initial relative position and velocity leads to a bounded trajectory around the controlled elliptic equilibrium. The numerical simulation indicates that the controller effectively stabilizes motions relative to the perturbed elliptic orbit with small eccentricity and unperturbed elliptic orbit with arbitrary eccentricity. The developed controller stabilizes the quasi-periodic relative trajectories involved in six foundational motions with different frequencies generated by the eigenvectors of the Floquet multipliers, rather than to track a reference relative configuration. Only the relative positions are employed for the feedback without the information from the direct measurement or the filter estimation of relative velocity. So the current controller has potential applications in formation flying for its less computation overload for on-board computer, less constraint on the measurements, and easily-achievable quasi-periodic relative trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfriend, K.T., Yan, H.: An orbital elements approach to the nonlinear formation flying problem. In: 1st International Formation Flying Symposium, Toulouse (2002)

  • Alfriend, K.T., Vadali, S., Gurfil, P., How, J., Breger, L.: Spacecraft Formation Flying: Dynamics, Control and Navigation. Elsevier Astrodynamics Series (2010)

  • Badawya A., McInnes C.: Small spacecraft formation using potential functions. Acta Astronaut. 65(11–12), 1783–1788 (2009)

    Article  ADS  Google Scholar 

  • Born G.H., Goldstein D.B., Thompson B.: An analytical theory for orbit determination. J. Astronaut. Sci. 49(2), 345–361 (2001)

    Google Scholar 

  • Breger, L., How, P.: Partial J 2-invariance for Spacecraft Formations. In: AIAA/AAS Astrodynamics Conference, Keystone, AIAA 2006-6585 (2006)

  • Breger L.S., How J.P.: Gauss’s variational equation-based dynamics and control for formation flying spacecraft. J. Guid. Control Dyn. 30(2), 437–448 (2007)

    Article  Google Scholar 

  • Clohessy W., Wiltshire R.: Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 27(9), 653–658 (1960)

    MATH  Google Scholar 

  • D’Amico S., Montenbruck O.: Proximity operations of formation flying spacecraft using an eccentricity/inclination vector separation. J. Guid. Control Dyn. 29(3), 554–563 (2006)

    Article  Google Scholar 

  • Duan, X., Bainum, P.M.: Design of spacecraft formation flying orbits. In: AAS, pp. 503–588 (2003)

  • Gim D.W., Alfriend K.T.: State transition matrix of relative motion for the perturbed noncircular reference orbit. J. Guid. Control Dyn. 26(6), 956–971 (2003)

    Article  Google Scholar 

  • Gurfil P., Mishne D.: Cyclic spacecraft formations:relative motion control using line-of-sight measurements only. J. Guid. Control Dyn. 30(1), 214–226 (2007)

    Article  Google Scholar 

  • Hamel J., de Lafontaine J.: Linearized dynamics of formation flying spacecraft on a J 2- perturbed elliptical orbit. J. Guid. Control Dyn. 30(6), 1649–1658 (2007)

    Article  Google Scholar 

  • Izzo, D., Sabatini, M., Valente, C.: A new linear model describing formation flying dynamics under J 2 effects. In: Proceedings of 17th AIDAA National Congress, vol. 1, pp. 493–500. Rome (2003)

  • Kasdin N.J., Gurfil P., Kolemen E.: Canonical modeling of relative spacecraft motion via epicyclic orbital elements. Celest. Mech. Dyn. Astron. 92(4), 337–370 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kechichian J.A.: Motion in general elliptic orbits with respect to a dragging and precessing coordinate frame. J. Astronaut. Sci. 46(1), 25–46 (1998)

    MathSciNet  Google Scholar 

  • King L.B., Parker G.G., Deshmukh S., Chong J.H.: Study of interspacecraft coulomb forces and implications for formation flying. J. Propuls. Power 19(3), 497–505 (2003)

    Article  Google Scholar 

  • Kong E., Kwon D., Schweighart S., Elias L., Sedwick R., Miller D.: Electromagnetic formation flight for multi-satellite arrays. J. Spacecr. Rockets 41(4), 659–666 (2004)

    Article  ADS  Google Scholar 

  • Koon, W.S., Marsden, J.E., Murray, R.M., Masdemont, J.: J 2 dynamics and formation flight. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, AIAA 2001-4090 (2001)

  • Lawden D.: Fundamentals of space navigation. J. Br. Interplanet. Soc. 13(2), 87–101 (1954)

    Google Scholar 

  • Lewis, J. Space weapons in the 2005 US defense budget request. In: Workshop on Outer Space and Security, paper 2375, Geneva (2004)

  • Martinusi V., Gurfil P.: Solutions and periodicity of satellite relative motion under even zonal harmonics perturbations. Celest. Mech. Dyn. Astron. 111, 387–414 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  • Montenbruck O., Kirschner M., D’Amico S., Bettadpur S.: E/I-vector separation for safe switching of the GRACE formation. Aerosp. Sci. Technol. 10(7), 628–635 (2006)

    Article  MATH  Google Scholar 

  • Ross I.M.: Linearized dynamic equations for spacecraft subject to J 2 perturbation. J. Guid. Control Dyn. 26(4), 657–659 (2003)

    Article  Google Scholar 

  • Rupp, T., Boge, T., Kiehling, R., Sellmaier, F.: Flight dynamics challenges of the german on-orbit servicing mission DEOS. In: 21st International Symposium on Space Flight Dynamics, ISSFD09f, Toulouse (2009)

  • Sabatini, M., Izzo, D., Palmerini, G.: Analysis and control of convenient orbital configuration for formation flying missions. In: 16th AAS/AIAA Space Flight Mechanics Conference, AAS 06-120, Tampa (2006)

  • Sabatini M., Izzo D., Palmerini G.: Minimum control for spacecraft formations in a J 2 perturbed environment. Celest. Mech. Dyn. Astron. 105, 141–157 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schaub H., Alfriend K.T.: J 2 invariant relative orbits for spacecraft formations. Celest. Mech. Dyn. Astron. 79, 77–95 (2001)

    Article  ADS  MATH  Google Scholar 

  • Schaub H., Alfriend K.T.: Hybrid cartesian and orbit element feedback law for formation flying spacecraft. J. Guid. Control Dyn. 25(2), 387–393 (2002)

    Article  Google Scholar 

  • Scheeres D.J., Hsiao F.Y., Vinh N.X.: Stabilizing motion relative to an unstable orbit: applications to spacecraft formation flight. J. Guid. Control Dyn. 26(1), 62–73 (2003)

    Article  Google Scholar 

  • Schweighart S., Sedwick R.: High-fidelity linearized J 2 model for satellite formation flight. J. Guid. Control Dyn. 25(6), 1073–1080 (2002)

    Article  Google Scholar 

  • Sengupta P., Vadali S.R., Alfriend K.T.: Averaged relative motion and applications to formation flight near perturbed orbits. J. Guid. Control Dyn. 31(2), 258–272 (2008)

    Article  Google Scholar 

  • Vadali S.R.: Model for linearized satellite relative motion about a J 2-perturbed mean circular orbit. J. Guid. Control Dyn. 32(5), 1687–1691 (2009)

    Article  Google Scholar 

  • Vaddi S.S., Vadali S.R.: Linear and nonlinear control laws for formation flying. Adv. Astronaut. Sci. 114(1), 171–187 (2003)

    Google Scholar 

  • Vadali, S.R., Schaub, H., Alfriend, K.T.: Initial conditions and fuel-optimal control for formation flying satellite. In: AIAA GNC Conference, Paper No. AIAA 99-426, Portland (1999)

  • Vadali S.R., Alfriend K.T., Vaddi S.S.: Hill’s equations, mean orbital elements, and formation flying of satellites. Adv. Astronaut. Scie. 106, 187–204 (2000)

    Google Scholar 

  • Vadali S.R., Vaddi S.S., Alfriend K.T.: An intelligent control concept for formation flying satellites. Int. J. Robust Nonlinear Control 12, 97–115 (2002)

    Article  MATH  Google Scholar 

  • Vadali S.R., Sengupta P., Yan H., Alfriend K.T.: Fundamental frequencies of satellite relative motion and control of formations. J. Guid. Control Dyn. 31(5), 1239–1248 (2008)

    Article  Google Scholar 

  • Wang, P.K.C., Hadaegh, F.Y.: Formation flying of multiple spacecraft with autonomous rendezvous and docking capability. In: IET Control Theory Application, pp. 494–504 (2007)

  • Xu M., Xu S.J.: J 2 invariant relative orbits via differential correction algorithm. Acta Mech. Sin. 23(5), 585–595 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Xu M., Xu S.J.: Structure- preserving stabilization for Hamiltonian system and its applications in solar sail. J. Guid. Control Dyn. 32(3), 997–1004 (2009)

    Article  Google Scholar 

  • Xu M., Xu S.J.: Nonlinear dynamical analysis for displaced orbits above a planet. Celest. Mech. Dyn. Astron. 102(4), 327–353 (2008)

    Article  ADS  MATH  Google Scholar 

  • Xu M., Wang Y., Xu S.J.: On the existence of J 2 invariant relative orbits from the dynamical system point of view. Celest. Mech. Dyn. Astron. 112(4), 427–444 (2012)

    Article  ADS  Google Scholar 

  • Yan, H., Alfriend, K.T.: Numerical searches and optimal control of J 2 invariant orbit. In: 16th Annual AAS/AIAA Spaceflight Mechanics Meeting, AAS 06-163, Tampa (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Zhu, J., Tan, T. et al. Application of Hamiltonian structure-preserving control to formation flying on a J 2-perturbed mean circular orbit. Celest Mech Dyn Astr 113, 403–433 (2012). https://doi.org/10.1007/s10569-012-9430-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9430-2

Keywords

Navigation