Skip to main content
Log in

Flybys in the planar, circular, restricted, three-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

An analysis is presented of gravity assisted flybys in the planar, circular, restricted three-body problem (pcr3bp) that is inspired by the Keplerian map and by the Tisserand- Poincaré graph. The new Flyby map is defined and used to give insight on the flyby dynamics and on the accuracy of the linked-conics model. The first main result of this work is using the Flyby map to extend the functionality of the Tisserand graph to low energies beyond the validity of linked conics. Two families of flybys are identified: Type I (direct) flybys and Type II (retrograde) flybys. The second main result of this work shows that Type I flybys exist at all energies and are more efficient than Type II flybys, when both exist. The third main result of this work is the introduction of a new model, called “Conics, When I Can”, which mixes numerical integration and patched conics formulas, and has applications beyond the scope of this work. The last main result is an example trajectory with multiple flybys at Ganymede, all outside the linked-conics domain of applicability. The trajectory is computed with the pcr3bp, and connects an initial orbit around Jupiter intersecting the Callisto orbit, to an approach transfer to Europa. Although the trajectory presented has similar time of flight and radiation dose of other solutions found in literature, the orbit insertion Δv is 150 m/s lower. For this reason, the transfer is included in the lander option of the Europa Habitability Mission Study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.L.: Low Thrust Trajectory Design for Resonant Flybys and Captures Using Invariant Manifolds. Ph.D. thesis, University of Colorado at Boulder (2005)

  • Anderson R.L., Lo M.W.: Dynamical systems analysis of planetary flybys and approach: planar Europa orbiter. J. Guidance Control Dyn. 33(6), 1899–1912 (2010). doi:10.2514/1.45060

    Article  Google Scholar 

  • Anderson R.L., Lo M.W.: Analysis of resonant flybys: ballistic case. J Astronaut Sci 58(2), 167–194 (2011)

    Google Scholar 

  • Anderson, R.L., Lo, M.W.: Flyby design using heteroclinic connection of unstable resonant orbits. In: AAS 12-136 AAS/AIAA Space Flight Mechanics Meeting, Charleston, SC, Feb 2012, pp. 1–20 (2011)

  • Belbruno E., Topputo F., Gidea M.: Resonance transitions associated to weak capture in the restricted three-body problem. Adv. Space Res. 42(8), 1330–1351 (2008)

    Article  ADS  Google Scholar 

  • Campagnola S., Lo M.W.: BepiColombo gravitational capture and the elliptic, restricted three-body problem. Proc. Appl. Math. Mech. 7(1), 1030,905–1030,906 (2008). doi:10.1002/pamm.200700330

    Google Scholar 

  • Campagnola S., Russell R.P.: Endgame problem part 1: V-infinity leveraging technique and leveraging graph. J. Guidance Control Dyn. 33(2), 463–475 (2010). doi:10.2514/1.44258

    Article  MathSciNet  Google Scholar 

  • Campagnola S., Russell R.P.: Endgame problem part 2: multi-body technique and T-P graph. J Guidance Control Dyn. 33(2), 476–486 (2010). doi:10.2514/1.44290

    Article  MathSciNet  Google Scholar 

  • Carusi A., Kresák L., Valsecchi G.B.: Conservation of the Tisserand parameter at close encounters of interplanetary objects with Jupiter. Earth Moon Planets 68(1), 71–94 (1995)

    Article  ADS  Google Scholar 

  • Carusi A., Valsecchi G.B., Greenberg R.: Planetary close encounters: geometry of approach and post-encounter orbital parameters. Celest. Mech. Dyn. Astron. 49(2), 111–131 (1990)

    Article  ADS  MATH  Google Scholar 

  • Carusi A., Valsecchi G.B., Kresák L.: Orbital patterns of interplanetary objects at close encounters with Jupiter. Bull. Astron. Inst. Czechoslovakia 33, 141–150 (1982)

    ADS  Google Scholar 

  • Gawlik, E.S., Marsden, J.E., Campagnola, S., Moore, A.: Invariant manifolds, discrete mechanics, and trajectory design for a mission to Titan. In: Advances in the Astronautical Sciences, vol. 134, PartI, pp. 1887–1904. Univelt, San Diego (2009)

  • Gawlik E.S., Marsden J.E., Du Toit P.C., Campagnola S.: Lagrangian coherent structures in the planar elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 103, 227–249 (2009). doi:10.1007/s10569-008-9180-3

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Greenberg R., Carusi A., Valsecchi G.B.: Outcomes of planetary close encounters: a systematic comparison of methodologies. Icarus 75, 1–29 (1988)

    Article  ADS  Google Scholar 

  • Grover P., Ross S.D.: Designing trajectories in a planet-moon environment using the controlled keplerian map. J. Guidance Control Dyn. 32(2), 437–444 (2009). doi:10.2514/1.38320

    Article  Google Scholar 

  • Heaton A.F., Strange N.J., Longuski J.M., Bonfiglio E.P.: Automated design of the Europa Orbiter tour. J. Spacecraft Rockets 39(1), 17–22 (2002)

    Article  ADS  Google Scholar 

  • Howell K.C., Davis D.C., Haapala A.F.: Application of periapse maps for the design of trajectories near the smaller primary in multi-body regimes. Math. Problems. Eng. 2012, 1–22 (2012). doi:10.1155/2012/351759

    Article  Google Scholar 

  • Howell K.C., Marchand B.G., Lo M.W.: Temporary satellite capture of short-period Jupiter family comets from the perspective of dynamical systems. J. Astronaut. Sci. 49(4), 539–557 (2001)

    MathSciNet  Google Scholar 

  • Johannesen, J.R., D’Amario, L.A.: Europa orbiter mission trajectory design. In: Advances in the Astronautical Sciences, vol. 103, part, pp. 895–908. Univelt, San Diego (1999)

  • Kloster K.W., Petropoulos A.E., Longuski J.M.: Europa Orbiter tour design with Io gravity assists. Acta Astronaut. 68, 931–946 (2010). doi:10.1016/j.actaastro.2010.08.041

    Article  ADS  Google Scholar 

  • Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos: An Interdisciplinary. J. Nonlinear Sci. 10, 427–469 (2000)

    MathSciNet  MATH  Google Scholar 

  • Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Low energy transfer to the moon. Celest. Mech. Dyn. Astron. 81, 63–73 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-Body Problem, And Space Mission Design. Marsden Books (2008)

  • Labunsky A.V., Papkov O.V., Sukhanov K.G.: Multiple Gravity Assist Interplanetary Trajectories. Earth Space Institute Book Series, pp. 33–68. Gordon and Breach Publishers, London (1998)

    Google Scholar 

  • Lantoine, G., Russell, R.P.: Near ballistic Halo-to-Halo transfers between planetary moons. J. Astronaut. Sci. (2012, to appear)

  • Lantoine G., Russell R.P., Campagnola S.: Optimization of low-energy resonant hopping transfers between planetary moons. Acta Astronaut. 68(7–8), 1361–1378 (2011). doi:10.1016/j.actaastro.2010.09.021

    Article  ADS  Google Scholar 

  • Malyshkin L., Tremaine S.: The Keplerian map for the planar restricted three-body problem as a model of comet evolution. Icarus 141, 341–353 (1999)

    Article  ADS  Google Scholar 

  • Perozzi, E.: Cassini Mission: Dynamics of the Titan Close Encounter. In: The Solid Bodies of the Outer Solar System, ESA SP-242 (1986)

  • Petit T.M., Henon M.: Satellite encounters. Icarus 555, 536–555 (1986)

    Article  ADS  Google Scholar 

  • Petrosky T.Y., Broucke R.: Area-preserving mappings and deterministic chaos for nearly parabolic motions. Celest. Mech. 42, 53–79 (1988)

    MathSciNet  ADS  Google Scholar 

  • Poincaré H.: Les Méthodes Nouvelles de la Mécanique Celeste. Gauthier-Villars et fils, Paris (1892)

    Google Scholar 

  • Ross S.D., Jerg S., Junge O.: Optimal capture trajectories using multiple gravity assists. Commun. Nonlinear Sci. Numer. Simul. 14(12), 4168–4175 (2009). doi:10.1016/j.cnsns.2008.12.009

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ross, S.D., Lo, M.W.: Design of a multi-moon orbiter. In: Advances in the Astronautical Sciences, vol. 114, pp. 669–684. Univelt, San Diego (2003)

  • Ross S.D., Scheeres D.J.: Multiple gravity assists, capture, and escape in the restricted three-body problem. SIAM J. Appl. Dyn. Syst. 6(3), 576–596 (2007). doi:10.1137/060663374

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Russell R.P.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astronaut. Sci. 54(2), 199–226 (2006)

    MathSciNet  Google Scholar 

  • Russell R.P., Lam T.: Designing Ephemeris capture trajectories at Europa using unstable periodic orbits. J. Guidance Control Dyn. 30(2), 482–491 (2007). doi:10.2514/1.22985

    Article  Google Scholar 

  • Russell R.P., Lara M.: On the design of an Enceladus science orbit. Acta Astronaut. 65, 27–39 (2009). doi:10.1016/j.actaastro.2009.01.021

    Article  ADS  Google Scholar 

  • Strange N.J., Longuski J.M.: Graphical method for gravity-assist trajectory design. J. Spacecraft Rockets 39(1), 9–16 (2002). doi:10.2514/2.3800

    Article  ADS  Google Scholar 

  • Strange, N.J., Russell, R.P., Buffington, B.B.: Mapping the V-Infinity Globe. In: AAS/AIAA Astrodynamics Specialist Conference and Exhibit, Mackinac Island, MI (2007)

  • Sweetser, T.H.: Jacobi’s intergal and DV-Earth-Gravity Assist (DV-EGA) Trajectories. In: Advances in the Astronautical Sciences, vol. 85, pp. 417–430. Univelt, San Diego (1993)

  • Szebehely V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    Google Scholar 

  • Tisserand F.F.: Traité de Méchanique Céleste, vol. 4, pp. 203–205. Gauthier-Villars et fils, Paris (1896)

    Google Scholar 

  • Uphoff C., Roberts P.H., Friedman L.D.: Orbit design concepts for jupiter orbiter missions. J. Spacecraft Rockets 13, 348–355 (1976). doi:10.2514/3.57096

    Article  ADS  Google Scholar 

  • Vallado D.: Fundamentals of Astrodynamics and Applications, vol. 12. McGrow-Hill, London (1997)

    Google Scholar 

  • Vaquero, M., Howell, K.C.: Poincaré maps and resonant orbits in the restricted three-body problems. In: AAS 11-428 AAS Astrodynamics Specialists Conference, Girdwood, AK (2011)

  • Vasile M., Campagnola S.: Design of low-thrust multi-gravity assist trajectories to Europa. J. Br. Interplanet. Soc. 62(1), 15–31 (2009)

    Google Scholar 

  • Villac B.F., Scheeres D.J.: Escaping trajectories in the hill three body problem and application. J. Guidance Control Dyn. 26(2), 224–232 (2003). doi:10.2514/2.5062

    Article  Google Scholar 

  • Villac B.F., Scheeres D.J.: On the concept of periapsis in hill’s problem. Celest. Mech. Dyn. Astron. 90, 165–178 (2004). doi:10.1007/s10569-004-0405-9

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Woolley R.C., Scheeres D.J.: Shrinking the V-infinity Sphere: Endgame Strategies for Planetary Moon Orbiters. Advances in the Astronautical Sciences, Denver (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Campagnola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campagnola, S., Skerritt, P. & Russell, R.P. Flybys in the planar, circular, restricted, three-body problem. Celest Mech Dyn Astr 113, 343–368 (2012). https://doi.org/10.1007/s10569-012-9427-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9427-x

Keywords

Navigation