Skip to main content
Log in

Trojan capture by terrestrial planets

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The paper is devoted to investigate the capture of asteroids by Venus, Earth and Mars into the 1:1 mean-motion resonance, especially into Trojan orbits. Current theoretical studies predict that Trojan asteroids are a frequent by-product of the planet formation. This is not only the case for the outer giant planets, but also for the terrestrial planets in the inner Solar System. By using numerical integrations, we investigated the capture efficiency and the stability of the captured objects. We found out that the capture efficiency is larger for the planets in the inner Solar System compared to the outer ones, but most of the captured Trojan asteroids are not long term stable. These temporary captures caused by chaotic behaviour of the objects were investigated without any dissipative forces. They show an interesting dynamical behaviour of mixing, like jumping from one Lagrange point to the other one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaugé C., Sándor Zs., Érdi B., Süli Á.: Co-orbital terrestrial planets in exoplanetary systems: a formation scenario. Astron. Astrophys. 463, 359 (2007)

    Article  ADS  Google Scholar 

  • Brasser R., Letho H.J.: The role of secular resonance on Trojans of the terrestrial planets. MNRAS 334, 241 (2002)

    Article  ADS  Google Scholar 

  • Bottke W.F., Jedicke R., Morbidelli A., Petit J., Gladman B.: Understanding the distribution of near-earth asteroids. Science 288, 2190 (2000)

    Article  ADS  Google Scholar 

  • Bowell E., Holt H.E., Levy D.H., Innanen K.A., Mikkola S., Shoemaker E.M.: 1990 MB: the first Mars Trojan. BAAS 22(4), 1357 (1990)

    ADS  Google Scholar 

  • Connors M., Wiegert P., Veillet C.: Earth’s Trojan asteroid. Nature 475, 481 (2011)

    Article  ADS  Google Scholar 

  • Cresswell P., Nelson R.P.: On the evolution of multiple protoplanets embedded in protostellar disc. Astron. Astrophys. 450, 833 (2006)

    Article  ADS  Google Scholar 

  • Delva M.: Integration of the elliptic restricted three-body problem with Lie series. Celest. Mech. 34, 145 (1984)

    Article  ADS  MATH  Google Scholar 

  • Dvorak R., Pilat-Lohinger E.: On the dynamical evolution of the Athens and the Apollos. P&SS 47, 665 (1999)

    ADS  Google Scholar 

  • Dvorak R., Pilat-Lohinger E., Schwarz R., Freistetter F.: Extrasolar Trojan planets close to habitable zones. Astron. Astrophys. 426, L37 (2004)

    Article  ADS  Google Scholar 

  • Dvorak R., Schwarz R.: On the stability regions of the Trojan asteroids. Celest. Mech. Dyn. Astron. 92, 19 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dvorak R., Schwarz R., Süli Á., Kotoulas T.: On the stability of the Neptune Trojans. MNRAS 382, 1324 (2007)

    Article  ADS  Google Scholar 

  • Dvorak R., Bazsó Á., Zhou L.-Y.: Where are the Uranus Trojans?. Celest. Mech. Dyn. Astron. 107, 51 (2010)

    Article  ADS  MATH  Google Scholar 

  • Érdi B., Sándor Z.: Stability of co-orbital motion in exoplanetary systems. Celest. Mech. Dyn. Astron. 92, 113 (2005)

    Article  ADS  MATH  Google Scholar 

  • Farinella P. et al.: Asteroids falling onto the Sun. Nature 371, 315 (1994)

    Article  ADS  Google Scholar 

  • Freistetter F.: The size of the stability regions of Jupiter Trojans. Astron. Astrophys. 453, 353 (2006)

    Article  ADS  Google Scholar 

  • Freistetter F.: Fuzzy characterization of near-earth-asteroids. Celest. Mech. Dyn. Astron. 104, 93–102 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Greenberg R., Nolan M.: Delivery of asteroids and meteorites to the inner solar system. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (eds.) Asteroids II, pp. 778. The University of Arizona Press, Tucson (1989)

    Google Scholar 

  • Greenberg R., Nolan M.: Dynamical relationships of near-Earth asteroids to mainbelt asteroids. In: Lewis, J., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, pp. 473. The University of Arizona Press, Tucson (1993)

    Google Scholar 

  • Hanslmeier A., Dvorak R.: Numerical integration with Lie series. Astron. Astrophys. 132, 203 (1984)

    MathSciNet  ADS  MATH  Google Scholar 

  • Laughlin G., Chambers J.E.: Extrasolar Trojans: the viability and detectability of planets in the 1:1 resonance. Astron. J. 124, 592 (2002)

    Article  ADS  Google Scholar 

  • Lichtenegger H.: The dynamics of bodies with variable masses. Celest. Mech. 34, 357 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lyra W., Johansen A., Klahr H., Piskunov N.: Standing on the shoulders of giants Trojan: Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids. Astron. Astrophys. 493, 1125–1139 (2008)

    Article  ADS  Google Scholar 

  • Marzari F., Scholl H.: On the instability of Jupiter’s Trojans. Icarus 159, 328 (2002)

    Article  ADS  Google Scholar 

  • Milani A., Carpino M., Hahn G., Nobili A.M.: Dynamics of planetcrossing asteroids: classes of orbital behaviour. Icarus 78, 212 (1989)

    Article  ADS  Google Scholar 

  • Mikkola S., Innanen K.: A numerical exploration of the evolution of Trojan-type asteroidal orbits. Astron. J. 104, 1641 (1992)

    Article  ADS  Google Scholar 

  • Morbidelli A., Levison H.F., Tsiganis K., Gomes R.: Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005)

    Article  ADS  Google Scholar 

  • Nauenberg M.: Stability and eccentricity for two planets in a 1:1 resonance, and their possible occurence in extrasolar planetary systems. Astron. J. 124, 2332 (2002)

    Article  ADS  Google Scholar 

  • Nesvorný D., Vokrouhlický D.: Chaotic capture of Neptune Trojans. Astrophs. J. 137, 5003–5011 (2009)

    ADS  Google Scholar 

  • Robutel P., Gabern F., Jorba A.: The observed Trojans and the global dynamics around the Lagrangian points of the Sun Jupiter System. Celest. Mech. Dyn. Astron. 92, 53 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Scholl H., Marzari F.: Long term stability of Mars Trojans. Lunar Planet. Sci. Conf. 35, 1107 (2004)

    ADS  Google Scholar 

  • Shoemaker E.M., Williams J.G., Helin E.F., Wolfe R.F.: Earth-crossing asteroids-Orbital classes, collision rates with Earth, and origin. In: Geherels, T. (ed.) Asteroids, pp. 253–282. University of Arizona Press, Tucson (1979)

    Google Scholar 

  • Schwarz R., Gyergyovits M., Dvorak R.: On the stability of high inclined L4 and L5 Trojans. Celest. Mech. Dyn. Astron. 90, 139 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schwarz R., Dvorak R., Süli Á., Érdi B.: Survey of the stability region of hypothetical habitable Trojan planets. Astron. Astrophys. 474, 1023 (2007)

    Article  ADS  Google Scholar 

  • Schwarz R., Süli Á., Dvorak R., Pilat-Lohinger E.: Stability of Trojan planets in multiplanetary systems. Celest. Mech. Dyn. Astron. 104, 69–84 (2009)

    Article  ADS  MATH  Google Scholar 

  • Smith A.W., Lissauer J.J.: Orbital stability of systems of closely-spaced planets, II: configurations with coorbital planets. Celest. Mech. Dyn. Astron. 107, 487–500 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Tabachnik S.A., Evans N.W.: Asteroids in the inner Solar system- I Existence. MNRAS 319, 63 (2000)

    Article  ADS  Google Scholar 

  • Thommes E.W.: A safety net for fast migrators: interactions between gapopening and sub-gap-opening bodies in a protoplanetary disk. Astrophys. J. 626, 1033 (2005)

    Article  ADS  Google Scholar 

  • Tsiganis K., Dvorak R., Pilat-Lohinger E.: Thersites: a jumping Trojan?. Astron. Astrophys. 354, 1091–1100 (2000)

    ADS  Google Scholar 

  • Wasserman, L.H., Ryan, E.L., Buie, M.W., Millis, R.L., Kern, S.D., Elliot, J.L., Washburn, K.E., Marsden, B.G.: 2001 QQ322, MPEC, 2001–V11 (2001)

  • Wolf M.: Wiederauffindung des Planeten (588)[1906TG]. AN 174, 47 (1907)

    ADS  Google Scholar 

  • Zhang S.P., Innanen K.A.: The motion of planetary triangular Lagrange particles with high inclinations. Astron. J. 96, 1995 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schwarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, R., Dvorak, R. Trojan capture by terrestrial planets. Celest Mech Dyn Astr 113, 23–34 (2012). https://doi.org/10.1007/s10569-012-9404-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9404-4

Keywords

Navigation