Trojan capture by terrestrial planets

  • R. Schwarz
  • R. Dvorak
Original Article


The paper is devoted to investigate the capture of asteroids by Venus, Earth and Mars into the 1:1 mean-motion resonance, especially into Trojan orbits. Current theoretical studies predict that Trojan asteroids are a frequent by-product of the planet formation. This is not only the case for the outer giant planets, but also for the terrestrial planets in the inner Solar System. By using numerical integrations, we investigated the capture efficiency and the stability of the captured objects. We found out that the capture efficiency is larger for the planets in the inner Solar System compared to the outer ones, but most of the captured Trojan asteroids are not long term stable. These temporary captures caused by chaotic behaviour of the objects were investigated without any dissipative forces. They show an interesting dynamical behaviour of mixing, like jumping from one Lagrange point to the other one.


Trojan capture Terrestrial planets Near Earth asteroids 1:1 mean-motion resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beaugé C., Sándor Zs., Érdi B., Süli Á.: Co-orbital terrestrial planets in exoplanetary systems: a formation scenario. Astron. Astrophys. 463, 359 (2007)ADSCrossRefGoogle Scholar
  2. Brasser R., Letho H.J.: The role of secular resonance on Trojans of the terrestrial planets. MNRAS 334, 241 (2002)ADSCrossRefGoogle Scholar
  3. Bottke W.F., Jedicke R., Morbidelli A., Petit J., Gladman B.: Understanding the distribution of near-earth asteroids. Science 288, 2190 (2000)ADSCrossRefGoogle Scholar
  4. Bowell E., Holt H.E., Levy D.H., Innanen K.A., Mikkola S., Shoemaker E.M.: 1990 MB: the first Mars Trojan. BAAS 22(4), 1357 (1990)ADSGoogle Scholar
  5. Connors M., Wiegert P., Veillet C.: Earth’s Trojan asteroid. Nature 475, 481 (2011)ADSCrossRefGoogle Scholar
  6. Cresswell P., Nelson R.P.: On the evolution of multiple protoplanets embedded in protostellar disc. Astron. Astrophys. 450, 833 (2006)ADSCrossRefGoogle Scholar
  7. Delva M.: Integration of the elliptic restricted three-body problem with Lie series. Celest. Mech. 34, 145 (1984)ADSzbMATHCrossRefGoogle Scholar
  8. Dvorak R., Pilat-Lohinger E.: On the dynamical evolution of the Athens and the Apollos. P&SS 47, 665 (1999)ADSGoogle Scholar
  9. Dvorak R., Pilat-Lohinger E., Schwarz R., Freistetter F.: Extrasolar Trojan planets close to habitable zones. Astron. Astrophys. 426, L37 (2004)ADSCrossRefGoogle Scholar
  10. Dvorak R., Schwarz R.: On the stability regions of the Trojan asteroids. Celest. Mech. Dyn. Astron. 92, 19 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. Dvorak R., Schwarz R., Süli Á., Kotoulas T.: On the stability of the Neptune Trojans. MNRAS 382, 1324 (2007)ADSCrossRefGoogle Scholar
  12. Dvorak R., Bazsó Á., Zhou L.-Y.: Where are the Uranus Trojans?. Celest. Mech. Dyn. Astron. 107, 51 (2010)ADSzbMATHCrossRefGoogle Scholar
  13. Érdi B., Sándor Z.: Stability of co-orbital motion in exoplanetary systems. Celest. Mech. Dyn. Astron. 92, 113 (2005)ADSzbMATHCrossRefGoogle Scholar
  14. Farinella P. et al.: Asteroids falling onto the Sun. Nature 371, 315 (1994)ADSCrossRefGoogle Scholar
  15. Freistetter F.: The size of the stability regions of Jupiter Trojans. Astron. Astrophys. 453, 353 (2006)ADSCrossRefGoogle Scholar
  16. Freistetter F.: Fuzzy characterization of near-earth-asteroids. Celest. Mech. Dyn. Astron. 104, 93–102 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. Greenberg R., Nolan M.: Delivery of asteroids and meteorites to the inner solar system. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (eds.) Asteroids II, pp. 778. The University of Arizona Press, Tucson (1989)Google Scholar
  18. Greenberg R., Nolan M.: Dynamical relationships of near-Earth asteroids to mainbelt asteroids. In: Lewis, J., Matthews, M.S., Guerrieri, M.L. (eds.) Resources of Near-Earth Space, pp. 473. The University of Arizona Press, Tucson (1993)Google Scholar
  19. Hanslmeier A., Dvorak R.: Numerical integration with Lie series. Astron. Astrophys. 132, 203 (1984)MathSciNetADSzbMATHGoogle Scholar
  20. Laughlin G., Chambers J.E.: Extrasolar Trojans: the viability and detectability of planets in the 1:1 resonance. Astron. J. 124, 592 (2002)ADSCrossRefGoogle Scholar
  21. Lichtenegger H.: The dynamics of bodies with variable masses. Celest. Mech. 34, 357 (1984)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. Lyra W., Johansen A., Klahr H., Piskunov N.: Standing on the shoulders of giants Trojan: Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids. Astron. Astrophys. 493, 1125–1139 (2008)ADSCrossRefGoogle Scholar
  23. Marzari F., Scholl H.: On the instability of Jupiter’s Trojans. Icarus 159, 328 (2002)ADSCrossRefGoogle Scholar
  24. Milani A., Carpino M., Hahn G., Nobili A.M.: Dynamics of planetcrossing asteroids: classes of orbital behaviour. Icarus 78, 212 (1989)ADSCrossRefGoogle Scholar
  25. Mikkola S., Innanen K.: A numerical exploration of the evolution of Trojan-type asteroidal orbits. Astron. J. 104, 1641 (1992)ADSCrossRefGoogle Scholar
  26. Morbidelli A., Levison H.F., Tsiganis K., Gomes R.: Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005)ADSCrossRefGoogle Scholar
  27. Nauenberg M.: Stability and eccentricity for two planets in a 1:1 resonance, and their possible occurence in extrasolar planetary systems. Astron. J. 124, 2332 (2002)ADSCrossRefGoogle Scholar
  28. Nesvorný D., Vokrouhlický D.: Chaotic capture of Neptune Trojans. Astrophs. J. 137, 5003–5011 (2009)ADSGoogle Scholar
  29. Robutel P., Gabern F., Jorba A.: The observed Trojans and the global dynamics around the Lagrangian points of the Sun Jupiter System. Celest. Mech. Dyn. Astron. 92, 53 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. Scholl H., Marzari F.: Long term stability of Mars Trojans. Lunar Planet. Sci. Conf. 35, 1107 (2004)ADSGoogle Scholar
  31. Shoemaker E.M., Williams J.G., Helin E.F., Wolfe R.F.: Earth-crossing asteroids-Orbital classes, collision rates with Earth, and origin. In: Geherels, T. (ed.) Asteroids, pp. 253–282. University of Arizona Press, Tucson (1979)Google Scholar
  32. Schwarz R., Gyergyovits M., Dvorak R.: On the stability of high inclined L4 and L5 Trojans. Celest. Mech. Dyn. Astron. 90, 139 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. Schwarz R., Dvorak R., Süli Á., Érdi B.: Survey of the stability region of hypothetical habitable Trojan planets. Astron. Astrophys. 474, 1023 (2007)ADSCrossRefGoogle Scholar
  34. Schwarz R., Süli Á., Dvorak R., Pilat-Lohinger E.: Stability of Trojan planets in multiplanetary systems. Celest. Mech. Dyn. Astron. 104, 69–84 (2009)ADSzbMATHCrossRefGoogle Scholar
  35. Smith A.W., Lissauer J.J.: Orbital stability of systems of closely-spaced planets, II: configurations with coorbital planets. Celest. Mech. Dyn. Astron. 107, 487–500 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. Tabachnik S.A., Evans N.W.: Asteroids in the inner Solar system- I Existence. MNRAS 319, 63 (2000)ADSCrossRefGoogle Scholar
  37. Thommes E.W.: A safety net for fast migrators: interactions between gapopening and sub-gap-opening bodies in a protoplanetary disk. Astrophys. J. 626, 1033 (2005)ADSCrossRefGoogle Scholar
  38. Tsiganis K., Dvorak R., Pilat-Lohinger E.: Thersites: a jumping Trojan?. Astron. Astrophys. 354, 1091–1100 (2000)ADSGoogle Scholar
  39. Wasserman, L.H., Ryan, E.L., Buie, M.W., Millis, R.L., Kern, S.D., Elliot, J.L., Washburn, K.E., Marsden, B.G.: 2001 QQ322, MPEC, 2001–V11 (2001)Google Scholar
  40. Wolf M.: Wiederauffindung des Planeten (588)[1906TG]. AN 174, 47 (1907)ADSGoogle Scholar
  41. Zhang S.P., Innanen K.A.: The motion of planetary triangular Lagrange particles with high inclinations. Astron. J. 96, 1995 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.University of ViennaViennaAustria

Personalised recommendations