Skip to main content
Log in

High-order expansion of the solution of preliminary orbit determination problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

A method for high-order treatment of uncertainties in preliminary orbit determination is presented. The observations consist in three couples of topocentric right ascensions and declinations at three observation epochs. The goal of preliminary orbit determination is to compute a trajectory that fits with the observations in two-body dynamics. The uncertainties of the observations are usually mapped to the phase space only when additional observations are available and a least squares fitting problem is set up. A method based on Taylor differential algebra for the analytical treatment of observation uncertainties is implemented. Taylor differential algebra allows for the efficient computation of the arbitrary order Taylor expansion of a sufficiently continuous multivariate function. This enables the mapping of the uncertainties from the observation space to the phase space as high-order multivariate Taylor polynomials. These maps can then be propagated forward in time to predict the observable set at successive epochs. This method can be suitably used to recover newly discovered objects when a scarce number of measurements is available. Simulated topocentric observations of asteroids on realistic orbits are used to assess the performances of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armellin R., Di Lizia P., Topputo F., Lavagna M., Bernelli-Zazzera F., Berz M.: Gravity assist space pruning based on differential algebra. Celest. Mech. Dyn. Astron. 106, 1–24 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Armellin R., Di Lizia P., Bernelli-Zazzera F., Berz M.: Asteroid close encounter characterization using differential algebra: the case of Apophis. Celest. Mech. Dyn. Astron. 107, 451–470 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, New York (1968)

  • Berz, M.: The new method of TPSA algebra for the description of beam dynamics to high-orders. Technical report AT-6:ATN-86-16, Los Alamos National Laboratory (1986)

  • Berz, M.: The method of power series tracking for the mathematical description of beam dynamics. Nuclear Instruments and Methods A258, 431–436 (1987)

    Google Scholar 

  • Berz, M.: Differential algebraic techniques. In: Tigner, M., Chao, A. (eds.) Handbook of Accelerator Physics and Engineering. World Scientific (1999a)

  • Berz M.: Modern Map Methods in Particle Beam Physics. Academic Press, New York (1999b)

    Google Scholar 

  • Berz, M., Makino, K.: COSY INFINITY version 9 reference manual. MSU report MSUHEP-060803, Michigan State University, East Lansing, MI 48824, 1–84 (2006)

  • Bykov O.P., L’vov V.N., Izmailov I.S., Kastel G.R.: An accuracy estimation of the World CCD asteroid observations in the years 1999–2005. Planet. Space Sci. 56, 1847–1850 (2008)

    Article  ADS  Google Scholar 

  • Celletti A., Pinzari G.: Dependence on the observational time intervals and domain of convergence of orbital determination methods. Celest. Mech. Dyn. Astron. 95, 327–344 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chesley S.R., Milani A.: An automatic Earth-asteroid collision monitoring system. Bull. Am. Astron. Soc. 32, 862 (2000)

    ADS  Google Scholar 

  • Chodas, P.W., Yeomans, D.K.: Predicting close approaches and estimating impact probabilities for near-Earth projects. In: Proceedings of AAS/AIAA Astrodynamics Specialists Conference, Girdwood, Alaska (1999)

  • Curtis H.D.: Orbital Mechanics for Engineering Students. Elsevier, Oxford (2005)

    Google Scholar 

  • Edelsbrunner H., Kirkpatrick D., Seidel R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29, 551–559 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Escobal P.R.: Methods of Orbit Determination. Wiley, New York (1965)

    Google Scholar 

  • Gauss, C.F.: Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections. Reprinted by Dover publications, New York (1963)

  • Gooding R.H.: A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight. Celest. Mech. Dyn. Astron. 66, 387–423 (1997)

    Article  ADS  MATH  Google Scholar 

  • Gronchi G.F.: Multiple solutions in preliminary orbit determination from three observations. Celest. Mech. Dyn. Astron. 103, 301–326 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kaplan M.H.: Modern Spacecraft Dynamics and Control. Wiley, New York (1975)

    Google Scholar 

  • Karimi R.R., Mortari D.: Initial orbit determination using multiple observations. Celest. Mech. Dyn. Astron. 109, 167–180 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  • Laplace, P.S.: Mémoires de l’Académie Royale des Sciences. Paris, Reprinted in Laplace’s Collected Works, 10, (1780)

  • Leuschner, A.O.: On the Laplacean orbit methods. In: Proceedings of the ICM, 209–217 (1912)

  • Merton G.: A modification of Gauss’ method for the determination of orbits. Mon. Notices R. Astron. Soc. 85, 693–732 (1925)

    ADS  MATH  Google Scholar 

  • Milani A., Gronchi G.F.: Theory of Orbit Determination. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  • Milani A., Chesley S.R., Valsecchi G.B.: Asteroid close encounters with Earth: risk assessment. Planet. Space Sci. 48, 945–954 (2000)

    Article  ADS  Google Scholar 

  • Milani A., Chesley S.R., Chodas P.W., Valsecchi G.B.: Asteroid close approaches: analysis and potential impact detection. Asteroids III 1, 89–101 (2002)

    Google Scholar 

  • Park R., Scheeres D.: Nonlinear mapping of gaussian statistics: theory and applications to spacecraft trajectory design. J. Guid. Control Dyn. 29, 1367–1375 (2006)

    Article  Google Scholar 

  • Park R.S., Scheeres D.J.: Nonlinear semi-analytic methods for trajectory estimation. J. Guid. Control Dyn. 30, 1668–1676 (2007)

    Article  Google Scholar 

  • Prussing J.E., Conway B.A.: Orbital Mechanics. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  • Virtanen J., Muinonen K., Bowell E.: Statistical ranging of asteroid orbits. Icarus 154, 412–431 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Armellin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armellin, R., Di Lizia, P. & Lavagna, M. High-order expansion of the solution of preliminary orbit determination problem. Celest Mech Dyn Astr 112, 331–352 (2012). https://doi.org/10.1007/s10569-012-9400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9400-8

Keywords

Navigation