Skip to main content
Log in

Disintegration process of hierarchical triple systems. I. Small-mass planet orbiting equal-mass binary

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The stability of hierarchical triple system is studied in the case of an extrasolar planet or a brown dwarf orbiting a pair of main sequence stars. The evolution of triple system is well modelled by random walk (RW) diffusion, particularly in the cases where the third body is small and tracing an orbit with a large eccentricity. A RW model neglects the fact that there are many periodic orbits accompanied by stability islands, and hence inherently overestimates the instability of the system. The present work is motivated by the hope to clarify how far the RW model is applicable. Escape time and the surface section technique are used to analyse the outcome of numerical integrations. The analysis shows that the RW-like model explains escape of the third body if the initial configuration is directly outside of the KAM tori. A small gap exists in (q 2/a 1, e 2)-plane between locations of the stability limit curves based on our numerical study and on RW-model (the former is shifted by –1.4 in q 2/a 1 direction from the latter).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chauvin G., Beust H., Lagrange A.-M., Eggenberger A.: Planetary systems in close binary stars: the case of HD 196885. Combined astrometric and radial velocity study. Astron. Astrophys. 528, 8 (2011)

    Article  ADS  Google Scholar 

  • Chirikov B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52(5), 263–379 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  • Froeschlé C., Lega E., Gonczi R.: Fast Lyapunov indicators. Application to asteroidal motion. Celst. Mech. Dyn. Astron. 67, 41–62 (1997)

    Article  ADS  MATH  Google Scholar 

  • Georgakarakos N.: Stability criteria for hierarchical triple systems. Celest. Mech. Dyn. Astron. 100, 151– 168 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gladman B.: Dynamics of systems two close planets. Icarus 106, 247–263 (1993)

    Article  ADS  Google Scholar 

  • Golubev V.G.: Regions where motion is impossible in the three body problem. Doklady. Akad. Nauk. SSSR 174, 767–770 (1967)

    Google Scholar 

  • Hadjidemetriou J.D.: Celest. Mech. Dyn. Astron 95, 225–244 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hairer, E., Norsett, S.P., Wanner, G.: Solving ordinary differential equations I: Nonstiff problems. Springer Series in Computational Mathematics, Chapter II.9 (1993)

  • Harrington R.S.: Stability criteria for triple stars. Celest. Mech. 6, 322–327 (1972)

    Article  ADS  Google Scholar 

  • Harrington R.S.: Planetary orbits in binary stars. Astron. J. 82, 753–756 (1977)

    Article  ADS  Google Scholar 

  • Higuchi T., Kitagawa G.: Knowledge discovery and self-organizing state space model. IEICE Trans. Inf. Syst. E83-D(1), 36–43 (2000)

    Google Scholar 

  • Holman M.J., Wiegert P.A.: Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999)

    Article  ADS  Google Scholar 

  • Kitagawa G., Gersch W.: Smoothness Priors Analysis of Time Series. Springer, New York (1996)

    Book  MATH  Google Scholar 

  • Kitagawa G., Sato S.: Monte Carlo smoothing and self-organaising state-space model. In: Doucet, A., de Freitas, N., Gordon, N. (eds) Sequential Monte Carlo Methods in Practice, pp. 177–195. Springer, New York (2001)

    Google Scholar 

  • Lichtenberg A.J., Lieberman M.A.: Regular and Chaotic Dynamics. Springer, Berlin (1992)

    MATH  Google Scholar 

  • Lecar M., Franklin F., Murison M.: On predicting long-term orbital instability: a relation between the Lyapunov time and sudden orbital transitions. Astron. J. 104(3), 1230–1236 (1992)

    Article  ADS  Google Scholar 

  • Marchal C., Saari D.G.: Hill regions for the general three-body problem. Celest. Mech. 12, 115–129 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Marchal C., Bozis G.: Hill stability and distance curves for the general three-body problem. Celest. Mech. 26, 311–333 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mardling R.A., Aarseth S.J.: Dynamics and stability of three-body systems. In: Steves, B.A., Roy, A.E. (eds) The Dynamics of Small Bodies in the Solar System, A Major Key to Solar System Studies. NATO ASI, vol. 90, pp. 385–392. Kluwer, Dordrecht (1999)

    Google Scholar 

  • Mikkola S., Tanikawa K.: Correlation of macroscopic instability and Lyapunov times in the general three-body problem. Mon. Not. R. Astron. Soc. 379, L21–L24 (2007)

    Article  ADS  Google Scholar 

  • Mudryk L.R., Wu Y.: Resonance overlap is responsible for ejecting planets in binary systems. Astrophys. J. 639, 423–431 (2006)

    Article  ADS  Google Scholar 

  • Orlov V.V., Rubinov A.V., Valtonen M., Mylläri A., Zhuchkov R.: Stability of triple systems. In: Orlov, V.V., Rubinov, A.V. (eds) Resonances, Stabilization, and Stable Chaos in Hierarchical Triple Systems, St. Petersburg State University, St. Petersburg (2008)

    Google Scholar 

  • Orlov V.V., Rubinov A.V., Shevchenko I.I.: The disruption of three-body gravitational systems: lifetime statistics. Mon. Not. R. Astron. Soc. 408, 1623–1627 (2010)

    Article  ADS  Google Scholar 

  • Pilat-Lohinger E., Funk B., Dvorak R.: Stability limits in double stars. Astron. Astrophys. 400, 1085–1094 (2003)

    Article  ADS  Google Scholar 

  • Shevchenko I.I.: Hamiltonian intermittency and Lévy flights in the three-body problem. Phys. Rev. 81, 066216-1–066216-11 (2010)

    MathSciNet  Google Scholar 

  • Stiefel E.L., Scheifele G.: Linear and Regular Celestial Mechanics. Springer, New York (1971)

    MATH  Google Scholar 

  • Szenkovits F., Mako Z.: About the Hill stability of extrasolar planets in stellar binary systems. Celest. Mech. Dyn. Astron. 101, 273–287 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  • Tanikawa, K., Mikkola, S.: 2008 A trial symbolic dynamics of the planar three-body problem. In: Orlov, V.V., Rubinov, A.V. (eds.) Proceedings of Resonances, Stabilization, and Stable Chaos in Hierarchical Triple Systems. St. Petersburg State Univ., St. Petersburg, 26–29 August (2007)

  • Thébault P.: Against all odds? Forming the planet of the HD 196885 binary. Celest. Mech. Dyn. Astron. 111, 29–49 (2011)

    Article  ADS  Google Scholar 

  • Valtonen M., Karttunen H.: The Three-Body Problem. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  • Valtonen, M., Mylläri, A., Orlov, V.V., Rubinov, A.V.: Dynamical evolution of dense stellar systems. In: Vesperini, E., Giersz, M., Sills, A. (eds.) Dynamical Evolution of Dense Stellar Systems, Capri, Italy, 5–9 September 2007. Proceedings of the International Astronomical Union. IAU Symposium, vol. 246, pp. 209–217. Cambridge University Press, Cambridge (2008)

  • Wisdom J.: The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. Astron. J. 85(8), 1122–1133 (1980)

    Article  ADS  Google Scholar 

  • Yoshida J.: Improved criteria for hyperbolic-elliptic motion in the general three-body problem II. Publ. Astron. Soc. Jpn. 26, 367–377 (1974)

    ADS  Google Scholar 

  • Zare K.: The effects of integrals on the totality of solutions of dynamical systems. Celest. Mech. 14, 73–83 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Zare K.: Bifurcation points in the planar problem of three bodies. Celest. Mech. 16, 35–38 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Zhou J.L., Sun Y.S., Zheng J.Q., Valtonen M.J.: The transfer of comets from near-parabolic to short-period orbits: map approach. Astron. Astrophys. 364, 887–893 (2000)

    ADS  Google Scholar 

  • Zhou J.L., Sun Y.S., Zhou L.Y.: Evidence for Lévy random walks in the evolution of comets from the Oort Cloud. Celest. Mech. Dyn. Astron. 84, 409–427 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Saito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, M.M., Tanikawa, K. & Orlov, V.V. Disintegration process of hierarchical triple systems. I. Small-mass planet orbiting equal-mass binary. Celest Mech Dyn Astr 112, 235–251 (2012). https://doi.org/10.1007/s10569-011-9395-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9395-6

Keywords

Navigation