Skip to main content
Log in

High order normal form construction near the elliptic orbit of the Sitnikov problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We consider the Sitnikov problem; from the equations of motion we derive the approximate Hamiltonian flow. Then, we introduce suitable action–angle variables in order to construct a high order normal form of the Hamiltonian. We introduce Birkhoff Cartesian coordinates near the elliptic orbit and we analyze the behavior of the remainder of the normal form. Finally, we derive a kind of local stability estimate in the vicinity of the periodic orbit for exponentially long times using the normal form up to 40th order in Cartesian coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belbruno E., Libre J., Ollé M.: On the families of periodic orbits which bifurcate from the circular Sitnikov motions. Celest. Mech. Dyn. Astron. 60, 99–129 (1994)

    Article  ADS  MATH  Google Scholar 

  • Bountis T., Papadakis K.E.: The stability of vertical motion in the N–body circular Sitnikov problem. Celest. Mech. Dyn. Astron. 104, 205–225 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dvorak R.: Numerical results to the Sitnikov problem. Celest. Mech. Dyn. Astron. 56, 71–80 (1993)

    Article  ADS  Google Scholar 

  • Dvorak R., Sun Y.S.: The phase space structure of the extended Sitnikov problem. Celest. Mech. Dyn. Astron. 67, 87–106 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Efthymiopoulos C.: On the connection between the Nekhoroshev theorem and Arnold diffusion. Celest. Mech. Dyn. Astron. 102, 49–68 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Faruque S.B.: Solution of the Sitnikov problem. Celest. Mech. Dyn. Astron. 87, 353–369 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Fassò F., Guzzo M., Benettin G.: Nekhoroshev–stability of elliptic equilibria of Hamiltonian systems. Commun. Math. Phys. 197, 347–360 (1998)

    Article  ADS  MATH  Google Scholar 

  • Ferraz–Mello S.: Canonical Theories of Perturbation, Degenerate Systems and Resonance. Springer, New York (2006)

    Google Scholar 

  • Giorgilli, A.: Notes on exponential stability of Hamiltonian systems. In: Dynamical Systems. Part I: Hamiltonian Systems and Celestial Mechanics, Pubblicazioni della Classe di Scienze, Scuola Normale Superiore, Pisa. Centro di Ricerca Matematica “Ennio De Giorgi”: Proceedings; Scuola Normale Superiore, Pisa (2002)

  • Guzzo M., Fassò F., Benettin G.: On the stability of elliptic equilibria. Math. Phys. Electron. J. 4, 1 (1998)

    MathSciNet  Google Scholar 

  • Hagel J.: An analytical approach to small amplitude solutions of the extended nearly circular Sitnikov problem. Celest. Mech. Dyn. Astron. 103, 251–266 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hagel J.: A new analytic approach to the Sitnikov Problem. Celest. Mech. Dyn. Astron. 53, 267–292 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hagel J., Lhotka C.: A high order perturbation analysis of the Sitnikov Problem. Celest. Mech. Dyn. Astron. 93, 201–228 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hagel J., Trenkler T.: A computer aided analysis of the Sitnikov problem. Celest. Mech. Dyn. Astron. 56, 81–98 (1993)

    Article  ADS  MATH  Google Scholar 

  • Kovács T., Érdi B.: Transient chaos in the Sitnikov problem. Celest. Mech. Dyn. Astron. 105, 289–304 (2009)

    Article  ADS  MATH  Google Scholar 

  • Liu J., Sun Y.S.: On the Sitnikov problem. Celest. Mech. Dyn. Astron. 49, 285–302 (1990)

    Article  ADS  MATH  Google Scholar 

  • MacMillan W.D.: An integrable case in the restricted problem of three bodies. Astron. J. 27, 11–13 (1913)

    Article  ADS  Google Scholar 

  • Moser J.: Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton (1973)

    MATH  Google Scholar 

  • Nekhoroshev N.: An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Russ. Math. Surv. 32, 1–65 (1977)

    Article  MATH  Google Scholar 

  • Pöschel J.: Nekhoroshev estimates for quasi–convex Hamiltonian systems. Math. Z. 213, 187–216 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Sidorenko V.V.: On the circular Sitnikov problem: the alternation of stability and instability in the family of vertical motions. Celest. Mech. Dyn. Astron. 109, 367–384 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  • Sitnikov K.A.: Existence of oscillatory motion for the three–body problem. Dokl. Akad. Nauk. USSR 133(2), 303–306 (1960)

    MathSciNet  Google Scholar 

  • Soulis P., Bountis T., Dvorak R.: Stability of motion in the Sitnikov 3–body problem. Celest. Mech. Dyn. Astron. 99(2), 129–148 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Stumpff K.: Himmelsmechanik I. VEB, Deutscher Verlag der Wissenschaften, Berlin (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Di Ruzza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Ruzza, S., Lhotka, C. High order normal form construction near the elliptic orbit of the Sitnikov problem. Celest Mech Dyn Astr 111, 449–464 (2011). https://doi.org/10.1007/s10569-011-9380-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9380-0

Keywords

Navigation