Skip to main content
Log in

On type-I migration near opacity transitions. A generalized Lindblad torque formula for planetary population synthesis

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We give an expression for the Lindblad torque acting on a low-mass planet embedded in a protoplanetary disk that is valid even at locations where the surface density or temperature profile cannot be approximated by a power law, such as an opacity transition. At such locations, the Lindblad torque is known to suffer strong deviation from its standard value, with potentially important implications for type I migration, but the full treatment of the tidal interaction is cumbersome and not well suited to models of planetary population synthesis. The expression that we propose retains the simplicity of the standard Lindblad torque formula and gives results that accurately reproduce those of numerical simulations, even at locations where the disk temperature undergoes abrupt changes. Our study is conducted by means of customized numerical simulations in the low-mass regime, in locally isothermal disks, and compared to linear torque estimates obtained by summing fully analytic torque estimates at each Lindblad resonance. The functional dependence of our modified Lindblad torque expression is suggested by an estimate of the shift of the Lindblad resonances that mostly contribute to the torque, in a disk with sharp gradients of temperature or surface density, while the numerical coefficients of the new terms are adjusted to seek agreement with numerics. As side results, we find that the vortensity related corotation torque undergoes a boost at an opacity transition that can counteract migration, and we find evidence from numerical simulations that the linear corotation torque has a non-negligible dependency upon the temperature gradient, in a locally isothermal disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artymowicz P.: On the wave excitation and a generalized torque formula for Lindblad resonances excited by external potential. Ap. J. 419, 155 (1993)

    Article  ADS  Google Scholar 

  • Baruteau C., Masset F.: On the corotation torque in a radiatively inefficient disk. Ap. J. 672, 1054–1067 (2008)

    Article  ADS  Google Scholar 

  • Casoli J., Masset F.S.: On the horseshoe drag of a low-mass planet. I. Migration in isothermal disks. Ap. J. 703, 845–856 (2009)

    Article  ADS  Google Scholar 

  • Cassen P.: Utilitarian models of the solar nebula. Icarus 112, 405–429 (1994)

    Article  ADS  Google Scholar 

  • D’Angelo G., Lubow S.H.: Three-dimensional disk-planet torques in a locally isothermal disk. Ap. J. 724, 730–747 (2010)

    Article  ADS  Google Scholar 

  • Henning T., Stognienko R.: Dust opacities for protoplanetary accretion disks: influence of dust aggregates. A&A 311, 291–303 (1996)

    ADS  Google Scholar 

  • Ida S., Lin D.N.C.: Toward a deterministic model of planetary formation. IV. Effects of type I migration. Astrophys. J. 673, 487 (2008a)

    Article  ADS  Google Scholar 

  • Ida S., Lin D.N.C.: Toward a deterministic model of planetary formation. v. accumulation near the ice line and super-earths. Astrophys. J. 685, 584 (2008b)

    Article  ADS  Google Scholar 

  • Li H., Finn J.M., Lovelace R.V.E., Colgate S.A.: Rossby wave instability of thin accretion disks. II. Detailed linear theory. Ap. J. 533, 1023–1034 (2000)

    Article  ADS  Google Scholar 

  • Lovelace R.V.E. , Li H., Colgate S.A., Nelson A.F.: Rossby wave instability of Keplerian accretion disks. Ap. J. 513, 805–810 (1999)

    Article  ADS  Google Scholar 

  • Lyra W., Paardekooper S., Mac Low M.: Orbital migration of low-mass planets in evolutionary radiative models: avoiding catastrophic infall. Ap. J. 715, L68–L73 (2010)

    Article  ADS  Google Scholar 

  • Masset F.: FARGO: a fast eulerian transport algorithm for differentially rotating disks. A&AS 141, 165–173 (2000a)

    Article  ADS  Google Scholar 

  • Masset, F.S.: FARGO: a fast eulerian transport algorithm for differentially rotating disks. In: Garzón, G., Eiroa, C., de Winter, D., Mahoney, T.J. (eds.) Disks, Planetesimals, and Planets, Astronomical Society of the Pacific Conference Series, vol. 219, pp 75+ (2000b)

  • Masset F.S.: The co-orbital corotation torque in a viscous disk: Numerical simulations. A&A 387, 605–623 (2002)

    Article  ADS  Google Scholar 

  • Masset F.S.: Planet disk interactions. In: Goupil, M.-J., Zahn , J.-P. (eds) EAS Publications Series, pp. 165–244. EAS Publications Series, Japan (2008)

    Google Scholar 

  • Masset F.S., Casoli J.: On the horseshoe drag of a low-mass planet. II. Migration in adiabatic disks. Ap. J. 703, 857–876 (2009)

    Article  ADS  Google Scholar 

  • Masset F.S., Casoli J.: Saturated torque formula for Planetary Migration in Viscous Disks with thermal diffusion: recipe for protoplanet population synthesis. Ap. J. 723, 1393–1417 (2010)

    Article  ADS  Google Scholar 

  • Masset F.S., Morbidelli A., Crida A., Ferreira J.: Disk surface density transitions as protoplanet traps. Ap. J. 642, 478–487 (2006)

    Article  ADS  Google Scholar 

  • Menou K., Goodman J.: Low-mass protoplanet migration in T tauri α-disks. Ap. J. 606, 520–531 (2004)

    Article  ADS  Google Scholar 

  • Miyoshi K., Takeuchi T., Tanaka H., Ida S.: Gravitational interaction between a Protoplanet and a protoplanetary disk. I. Local three-dimensional simulations. Ap. J. 516, 451–464 (1999)

    Article  ADS  Google Scholar 

  • Mordasini C., Alibert Y., Benz W.: Extrasolar planet population synthesis. I. Method, formation tracks, and mass-distance distribution. A&A 501, 1139 (2009a)

    Article  ADS  Google Scholar 

  • Mordasini C., Alibert Y., Benz W., Naef D.: Extrasolar planet population synthesis. II. Statistical comparison with observations. A&A 501, 1161 (2009b)

    Article  ADS  Google Scholar 

  • Paardekooper S., Baruteau C., Crida A., Kley W.: A torque formula for non-isothermal type I planetary migration-I. Unsaturated horseshoe drag. MNRAS 401, 1950–1964 (2010)

    Article  ADS  Google Scholar 

  • Paardekooper S., Baruteau C., Kley W.: A torque formula for non-isothermal type I planetary migration—II. Effects of diffusion. MNRAS 410, 293–303 (2011)

    Article  ADS  Google Scholar 

  • Paardekooper S.J., Papaloizou J.C.B.: On disc protoplanet interactions in a non-barotropic disc with thermal diffusion. A&A 485, 877–895 (2008)

    Article  ADS  MATH  Google Scholar 

  • Paardekooper S.J., Papaloizou J.C.B.: On corotation torques, horseshoe drag and the possibility of sustained stalled or outward protoplanetary migration. MNRAS 394, 2283–2296 (2009)

    Article  ADS  Google Scholar 

  • Tanaka H., Takeuchi T., Ward W.R.: Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and lindblad torques and planet migration. Ap. J. 565, 1257–1274 (2002)

    Article  ADS  Google Scholar 

  • Ward W.R.: Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997)

    Article  ADS  Google Scholar 

  • Yang C., Menou K.: Rayleigh adjustment of narrow barriers in protoplanetary discs. MNRAS 402, 2436–2440 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric S. Masset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masset, F.S. On type-I migration near opacity transitions. A generalized Lindblad torque formula for planetary population synthesis. Celest Mech Dyn Astr 111, 131–160 (2011). https://doi.org/10.1007/s10569-011-9364-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9364-0

Keywords

Navigation