Skip to main content
Log in

Angular momentum exchange during secular migration of two-planet systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We investigate the secular dynamics of two-planet coplanar systems evolving under mutual gravitational interactions and dissipative forces. We consider two mechanisms responsible for the planetary migration: star-planet (or planet-satellite) tidal interactions and interactions of a planet with a gaseous disc. We show that each migration mechanism is characterized by a specific law of orbital angular momentum exchange. Calculating stationary solutions of the conservative secular problem and taking into account the orbital angular momentum leakage, we trace the evolutionary routes followed by the planet pairs during the migration process. This procedure allows us to recover the dynamical history of two-planet systems and constrain parameters of the involved physical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi I., Hayashi C., Nakazawa K.: The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog. Theor. Phys. 56, 1756–1771 (1976)

    Article  ADS  Google Scholar 

  • Armitage P.J.: Astrophysics of Planet Formation. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  • Beauge C., Ferraz-Mello S.: Resonance trapping in the primordial solar nebula - The case of a Stokes drag dissipation. Icarus 103, 301–318 (1993)

    Article  ADS  Google Scholar 

  • Beaugé C., Michtchenko T.A., Ferraz-Mello S.: Planetary migration and extrasolar planets in the 2/1 mean-motion resonance. Mon. Not. R. Astron. Soc. 365, 1160–1170 (2006)

    Article  ADS  Google Scholar 

  • Brouwer D., Clemence G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)

    Google Scholar 

  • Correia A.C.M., Levrard B., Laskar J.: On the equilibrium rotation of Earth-like extra-solar planets. Astron. Astrophys. 488, L63–L66 (2008)

    Article  ADS  MATH  Google Scholar 

  • Darwin G.H.: On the secular change in the elements of the orbit of a satellite revolving about a tidally distorted planet. Philos. Trans. 171, 713–891 (1880) (repr. Scientific Papers, Cambridge, Vol. II, 1908)

    Article  MATH  Google Scholar 

  • Dobbs-Dixon I., Lin D.N.C., Mardling R.A.: Spin-orbit evolution of short-period Planets. Astrophys. J. 610, 464–476 (2004)

    Article  ADS  Google Scholar 

  • Efroimsky M., Williams J.G.: Tidal torques: a critical review of some techniques. Celest. Mech. Dyn. Astron. 104, 257–289 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Fernandez J.A., Ip W.-H.: Some dynamical aspects of the accretion of Uranus and Neptune - The exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984)

    Article  ADS  Google Scholar 

  • Ferraz-Mello, S., Rodríguez, A., Hussmann, H.: Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest. Mech. Dyn. Astron. 101, 171–201 (2008) (Erratum: 104, 319–320, 2009)

    Google Scholar 

  • Ferraz-Mello, S., Tadeu dos Santos, M., Beaugé, C., Michtchenko, T.A., Rodríguez, A.: On planetary mass determination in the case of super-Earths orbiting active stars. The case of the CoRoT-7 system. Astron. Astrophys. (in press, preprint: arXiv:1011.2144) (2011)

  • Goldreich P., Soter S.: Q in the Solar System. Icarus 5, 375–389 (1966)

    Article  ADS  Google Scholar 

  • Goldreich P., Sari R.: Eccentricity evolution for planets in Gaseous disks. Astrophys. J. 585, 1024–1037 (2003)

    Article  ADS  Google Scholar 

  • Gomes R.S.: The effect of nonconservative forces on resonance lock: stability and instability. Icarus 115, 47–59 (1995)

    Article  ADS  Google Scholar 

  • Hadjidemetriou J.D., Voyatzis G.: On the dynamics of extrasolar planetary systems under dissipation: migration of planets. Celest. Mech. Dyn. Astron. 107, 3–19 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hut P.: Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981)

    ADS  MATH  Google Scholar 

  • Jeffreys H.: The effect of tidal friction on eccentricity and inclination. Mon. Not. R. Astron. Soc. 122, 339–343 (1961)

    MathSciNet  ADS  MATH  Google Scholar 

  • Kirsh D.R., Duncan M., Brasser R., Levison H.F.: Simulations of planet migration driven by planetesimal scattering. Icarus 199, 197–209 (2009)

    Article  ADS  Google Scholar 

  • Kley W.: On the migration of a system of protoplanets. Mon. Not. R. Astron. Soc. 313, L47–L51 (2000)

    Article  ADS  Google Scholar 

  • Kley W.: Dynamical evolution of planets in disks. Celest. Mech. Dyn. Astron. 87, 85–97 (2003)

    Article  ADS  MATH  Google Scholar 

  • Kley W., Peitz J., Bryden G.: Evolution of planetary systems in resonance. Astron. Astrophys. 414, 735–747 (2004)

    Article  ADS  Google Scholar 

  • Kominami J., Ida S.: The effect of tidal interaction with a gas disk on formation of terrestrial planets. Icarus 157, 43–56 (2002)

    Article  ADS  Google Scholar 

  • Lee M.H., Peale S.J.: Dynamics and origin of the 2:1 orbital resonances of the GJ 876 planets. Astrophys. J. 567, 596–609 (2002)

    Article  ADS  Google Scholar 

  • Lin D.N.C., Bodenheimer P., Richardson D.C.: Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996)

    Article  ADS  Google Scholar 

  • Malhotra R.: The origin of Pluto’s orbit: implications for the solar system beyond Neptune. Astron. J. 110, 420–429 (1995)

    Article  ADS  Google Scholar 

  • Masset F.S., Morbidelli A., Crida A., Ferreira J.: Disk surface density transitions as protoplanet traps. Astrophys. J. 642, 478–487 (2006)

    Article  ADS  Google Scholar 

  • Michtchenko T.A., Malhotra R.: Secular dynamics of the three-body problem: application to the υ Andromedae planetary system. Icarus 168, 237–248 (2004)

    Article  ADS  Google Scholar 

  • Michtchenko, T.A., Rodríguez, A.: Modeling the secular evolution of migrating planet pairs. Mon. Not. R. Astron. Soc. (in press, preprint: arXiv:1103.5485) (2011)

  • Mignard F.: The evolution of the lunar orbit revisited—I. Moon Planets 20, 301–315 (1979)

    Article  ADS  MATH  Google Scholar 

  • Patterson C.W.: Resonance capture and the evolution of the planets. Icarus 70, 319–333 (1987)

    Article  ADS  Google Scholar 

  • Peale S.J.: Origin and evolution of the natural satellites. Ann. Rev. Astron. Astrophys. 37, 533–602 (1999)

    Article  ADS  Google Scholar 

  • Pont F.: Empirical evidence for tidal evolution in transiting planetary systems. Mon. Not. R. Astron. Soc. 396, 1789–1796 (2009)

    Article  ADS  Google Scholar 

  • Rodríguez A., Ferraz-Mello S.: Tidal decay and circularization of the orbits of short-period planets. EAS Publications Series 42, 411–418 (2010)

    Article  Google Scholar 

  • Rodríguez, A., Ferraz-Mello, S., Michtchenko, T.A., Beaugé, C., Miloni, O.: Tidal decay and orbital circularization in close-in two-planet systems. Mon. Not. R. Astron. Soc. (2011). doi:10.1111/j.1365-2966.2011.18861.x

  • Smart W.M.: Celestial Mechanics. Longmans-Green, London (1960)

    Google Scholar 

  • Tittemore W.C., Wisdom J.: Tidal evolution of the Uranian satellites. I—Passage of Ariel and Umbriel through the 5:3 mean-motion commensurability. Icarus 74, 172–230 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, A., Michtchenko, T.A. & Miloni, O. Angular momentum exchange during secular migration of two-planet systems. Celest Mech Dyn Astr 111, 161–178 (2011). https://doi.org/10.1007/s10569-011-9359-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9359-x

Keywords

Navigation