Skip to main content

Earth–Mars transfers with ballistic escape and low-thrust capture

Abstract

In this paper novel Earth–Mars transfers are presented. These transfers exploit the natural dynamics of n-body models as well as the high specific impulse typical of low-thrust systems. The Moon-perturbed version of the Sun–Earth problem is introduced to design ballistic escape orbits performing lunar gravity assists. The ballistic capture is designed in the Sun–Mars system where special attainable sets are defined and used to handle the low-thrust control. The complete trajectory is optimized in the full n-body problem which takes into account planets’ orbital inclinations and eccentricities. Accurate, efficient solutions with reasonable flight times are presented and compared with known results.

This is a preview of subscription content, access via your institution.

References

  • Anderson R.L., Lo M.W.: Role of invariant manifolds in low-thrust trajectory design. J. Guid. Control Dyn. 32, 1921–1930 (2009)

    Article  Google Scholar 

  • Armellin R., Di Lizia P., Topputo F., Lavagna M., Bernelli-Zazzera F., Berz M.: Gravity assist space pruning based on differential Algebra. Celest. Mech. Dyn. Astron. 106(1), 1–24 (2010)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  • Belbruno, E.: Lunar capture orbits, a method of constructing Earth–Moon trajectories and the lunar GAS mission. In: Paper AIAA 97-1054, Proceedings of the 19th AIAA/DGLR/JSASS International Electric Propulsion Conference, Colorado Springs, CO (1987)

  • Belbruno, E.: Examples of the nonlinear dynamics of ballistic capture and escape in the Earth–Moon System. In: AIAA Paper 90-2896, AIAA Astrodynamics Conference, Portland, Oregon (1990)

  • Belbruno E., Miller J.: Sun-perturbed Earth-to-Moon transfers with ballistic capture. J. Guid. Control Dyn. 16, 770–775 (1993)

    ADS  Article  Google Scholar 

  • Belbruno, E.: The dynamical mechanism of ballistic lunar capture transfers in the four-body problem from the perspective of invariant manifolds and hill’s regions. In: Technical Report, Centre De Recerca Matematica, Barcelona, Spain (1994)

  • Belbruno E.: Capture Dynamics and Chaotic Motions in Celestial Mechanics: With Applications to the Construction of Low Energy Transfers. Princeton University Press, Princeton (2004)

    MATH  Google Scholar 

  • Betts J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998)

    MATH  Article  Google Scholar 

  • Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM (2000)

  • Conley C.C.: Low energy transit orbits in the restricted three- body problem. SIAM J. Appl. Math. 16, 732–746 (1968)

    MathSciNet  MATH  Article  Google Scholar 

  • Dellnitz M., Junge O., Post M., Thiere B.: On target for venus—set oriented computation of energy efficient low thrust trajectories. Celest. Mech. Dyn. Astron. 95, 357–370 (2006)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  • Dellnitz M., Padberg K., Post M., Thiere B.: Set oriented approximation of invariant manifolds: review of concepts for astrodynamical problems. Am. Inst. Phys. Conf. Proc. 886, 90–99 (2007)

    MathSciNet  ADS  Google Scholar 

  • Enright P.J., Conway B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15, 994–1002 (1992)

    MATH  Article  Google Scholar 

  • Gómez G., Jorba A., Masdemont J., Simó C.: Study of the transfer from the Earth to a halo orbit around the equilibrium point L1. Celest. Mech. Dyn. Astron. 56, 239–259 (1993)

    Google Scholar 

  • Gómez G., Koon W.S., Lo M.W., Marsden J.E., Masdemont J., Ross S.D.: Invariant manifolds, the spatial three-body problem and space mission design. Adv. Astronaut. Sci. 109, 3–22 (2001)

    Google Scholar 

  • Gómez, G., Masdemont, J., Mondelo, J.M.: Libration point orbits: a survey from the dynamical point of view. In: Proceedings of the International Conference on Libration Point Orbits and Applications. Girona, Spain (2002)

  • Gil-Fernández J., CorralVan Damme C., Graziano M., Amata G.B., Cogo F., Perino M.A.: ExoMars alternative escape trajectories with soyuz/fregat. Ann. N.Y. Acad. Sci. 1065(1), 15–36 (2005)

    ADS  Article  Google Scholar 

  • Gladman B.J.: Delivery of Planetary Ejecta to Earth. PhD thesis, Cornell University, Ithaca, NY (1996)

  • Hargraves C., Paris S.: Direct trajectory optimization using nonlinear programming and collocations. J. Guid. Control Dyn. 10, 338–342 (1987)

    MATH  Article  Google Scholar 

  • Howell, K., Ozimek, M.: Low-thrust transfers in the Earth-Moon system including applications to libration point orbits. In: Paper AAS 07-343, Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Mackinac Island, MI (2007)

  • Kemble S.: Interplanetary Mission Analysis and Design. Springer, New York (2006)

    Google Scholar 

  • Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2000)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  • Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Low energy transfer to the Moon. Celest. Mech. Dyn. Astron. 81, 63–73 (2001)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  • Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Constructing a low energy transfer between Jovian Moons. Contemp. Math. 292, 129–145 (2002)

    MathSciNet  Article  Google Scholar 

  • Llibre J., Martínez R., Simó C.: Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L 2 in the restricted three-body problem. J. Differ. Equ. 58, 104–156 (1985)

    MATH  Article  Google Scholar 

  • Lo, M.W., Ross, S.D.: Low energy interplanetary transfers using the invarian manifolds of L 1, L 2, and halo orbits. In: Paper AAS 98-136, Proceedings of the AAS/AIAA Space Flight Mechanics Meeting (1998)

  • Marsden J.E., Ross S.D.: New methods in celestial mechanics and mission design. Bull. Am. Math. Soc. 43, 43–73 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  • Martin, C., Conway, B.A., Ibán̈ez P.: Space Manifold Dynamics, Chapter Optimal Low-Thrust Trajectories to the Interior Earth-Moon Lagrange Point, pp. 161–184. Springer (2010)

  • Mingotti, G.: Trajectory Design and Optimization in Highly Nonlinear Astrodynamics. PhD thesis, Politecnico di Milano, Milano, Italy (2010)

  • Mingotti G., Topputo F., Bernelli-Zazzera F.: Combined optimal low-thrust and stable-manifold trajectories to the Earth–Moon halo orbits. Am. Inst. Phys. Conf. Proc. 886, 100–110 (2007)

    MathSciNet  ADS  Google Scholar 

  • Mingotti G., Topputo F., Bernelli-Zazzera F.: Low-energy, low-thrust transfers to the Moon. Celest. Mech. Dyn. Astron. 105, 61–74 (2009)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Numerical methods to design low-energy, low-thrust sun-perturbed transfers to the Moon. In: Proceedings of the 49th Israel Annual Conference on Aerospace Sciences, Tel Aviv—Haifa, Israel (2009)

  • Nakamiya M., Yamakawa H., Scheeres D., Yoshikawa D.: Interplanetary transfers between halo orbits: connectivity between escape and capture trajectories. J. Guid. Control Dyn. 33, 803–813 (2010)

    Article  Google Scholar 

  • Parker T.S., Chua L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1989)

    MATH  Book  Google Scholar 

  • Pergola P., Geurts K., Casaregola C., Andrenucci M.: Earth–Mars halo to halo low thrust manifold transfers. Celest. Mech. Dyn. Astron. 105, 19–32 (2009)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  • Ren, Y., Masdemont, J., Gómez, G., Fantino, E.: Two Mechanism of Natural Transport in the Solar System. Computations in Nonlinear Science and Numerical Simulations (2011, to appear)

  • Schoenmaekers, J., Horas, D., Pulido J.A.: SMART-1: with solar electric propulsion to the Moon. In: Proceedings of the 16th International Symposium on Space Flight Dynamics, Pasadena, CA (2001)

  • Senent J., Ocampo C., Capella A.: Low-thrust variable-specific-impulse transfers and guidance to unstable periodic orbits. J. Guid. Control Dyn. 28, 280–290 (2005)

    Article  Google Scholar 

  • Simó, C., Gómez, G., Jorba, A., Masdemont, J.: The bicircular model near the triangular libration points of the RTBP. In: From Newton to Chaos, pp. 343–370 (1995)

  • Starchville, T.F., Melton, R.G.: Optimal low-thrust trajectories to Earth-Moon L 2 halo orbits (Circular Problem). In: Paper AAS 97-714, Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, Sun Valley, ID (1997)

  • Starchville T.F., Melton R.G.: Optimal low-thrust transfers to halo orbits about the L2 libration point in the Earth-Moon system (Elliptical Problem). Adv. Astronaut. Sci. 99(2), 1489–1505 (1998)

    Google Scholar 

  • Sukhanovm, A., Eismont, N.: Low thrust transfer to Sun-Earth L 1 and L 2 points with a constraint on the thrust direction. In: Proceedings of the International Conference on Libration Point Orbits and Applications, Girona, Spain (2002)

  • Szebehely V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press Inc., New York (1967)

    Google Scholar 

  • Topputo, F.: Low-Thrust Non-Keplerian Orbits: Analysis, Design, and Control. PhD thesis, Politecnico di Milano, Milano, Italy (2007)

  • Topputo F., Belbruno E., Gidea M.: Resonant motion, ballistic escape, and their applications in astrodynamics. Adv. Space Res. 42(8), 6–17 (2008)

    Article  Google Scholar 

  • Topputo, F. Vasile, M., Bernelli-Zazzera, F.: A hybrid optimization of the low energy interplanetary transfers associated to the invariant manifolds of the restricted three-body problem. In: Paper IAC-04-A.6.06, 55th International Astronautical Congress, Vancouver, Canada, 4–8 Oct (2004)

  • Topputo F., Vasile M., Bernelli-Zazzera F.: Low energy interplanetary transfers exploiting invariant manifolds of the restricted three-body problem. J. Astron. Sci. 53, 353–372 (2005)

    MathSciNet  Google Scholar 

  • Whiffen G.J., Sims J.A.: Application of the SDC optimal control algorithm to low-thrust escape and capture trajectory optimization. Adv. Astronaut. Sci. 112, 1361–1382 (2002)

    Google Scholar 

  • Williams, D.R.: Planetary Fact Sheets. NASA: National Aeronautics and Space Administration, 2007. http://nssdc.gsfc.nasa.gov/planetary/planetfact.html (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Topputo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mingotti, G., Topputo, F. & Bernelli-Zazzera, F. Earth–Mars transfers with ballistic escape and low-thrust capture. Celest Mech Dyn Astr 110, 169–188 (2011). https://doi.org/10.1007/s10569-011-9343-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9343-5

Keywords

  • Restricted three-body problem
  • Invariant manifolds
  • Low-thrust transfer
  • n-body models
  • Ballistic capture
  • Lunar-gravity assist