New stacked central configurations for the planar 5-body problem

  • Jaume LlibreEmail author
  • Luis Fernando Mello
  • Ernesto Perez-Chavela
Original Article


A stacked central configuration in the n-body problem is one that has a proper subset of the n-bodies forming a central configuration. In this paper we study the case where three bodies with masses m 1, m 2, m 3 (bodies 1, 2, 3) form an equilateral central configuration, and the other two with masses m 4, m 5 are symmetric with respect to the mediatrix of the segment joining 1 and 2, and they are above the triangle generated by {1, 2, 3}. We show the existence and non-existence of this kind of stacked central configurations for the planar 5-body problem.


Planar central configurations n-body problem Stacked central configurations 5-body problem 


  1. Alfaro F., Perez-Chavela E.: Families of continua of central configurations in charged problems. Dyn. Cont. Disc. Impu. Sys. Series A: Math. Anal. 9, 463–475 (2002)zbMATHMathSciNetGoogle Scholar
  2. Boccaletti D., Pucacco G.: Theory of Orbits, vol. 1, Integrable systems and non-perturbative methods. Astronomy and Astrophysics Library. Springer, Berlin (1996)Google Scholar
  3. Corbera M., Llibre J.: On the existence of central configurations of p nested regular polyhedra. Celest. Mech. Dyn. Astron. 106, 197–207 (2010)CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. Corbera M., Cors J.M., Llibre J.: On the central configurations of the planar 1+3 body problem. Celest. Mech. Dyn. Astron. 109, 27–43 (2011)CrossRefADSMathSciNetGoogle Scholar
  5. Euler L.: De moto rectilineo trium corporum se mutuo attahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767)Google Scholar
  6. Gidea M., Llibre J.: Symmetric planar central configurations of five bodies: Euler plus two. Celest. Mech. Dyn. Astron. 106, 89–107 (2010)CrossRefADSMathSciNetzbMATHGoogle Scholar
  7. Hagihara Y.: Celestial Mechanics, vol. 1. MIT Press, Massachusetts (1970)Google Scholar
  8. Hampton M.: Stacked central configurations: new examples in the planar five-body problem. Nonlinearity 18, 2299–2304 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. Hampton M., Moeckel R.: Finiteness of relative equilibria of the four-body problem. Invent. Math. 163, 289–312 (2006)CrossRefzbMATHADSMathSciNetGoogle Scholar
  10. Lagrange J.L.: Essai sur le problème de trois corps, Ouvres, vol. 6. Gauthier-Villars, Paris (1873)Google Scholar
  11. Llibre J., Mello L.F.: New central configurations for the planar 5-body problem. Celest. Mech. Dyn. Astron. 100, 141–149 (2008)CrossRefzbMATHADSMathSciNetGoogle Scholar
  12. Moeckel R.: On central configurations. Math. Z. 205, 499–517 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  13. Moulton F.R.: The straight line solutions of n bodies. Ann. Math. 12, 1–17 (1910)CrossRefMathSciNetzbMATHGoogle Scholar
  14. Newton I.: Philosophi Naturalis Principia Mathematica. Royal Society, London (1687)Google Scholar
  15. Piña E., Lonngi P.: Central configurations for the planar Newtonian four-body problem. Celest. Mech. Dyn. Astron. 108, 73–93 (2010)CrossRefADSzbMATHGoogle Scholar
  16. Roberts G.E.: A continuum of relative equilibria in the five-body problem. Physica D 127, 141–145 (1999)CrossRefzbMATHADSMathSciNetGoogle Scholar
  17. Saari D.: On the role and properties of central configurations. Celest. Mech. 21, 9–20 (1980)CrossRefzbMATHADSMathSciNetGoogle Scholar
  18. Smale S.: Topology and mechanics II: the planar n-body problem. Invent. Math. 11, 45–64 (1970)CrossRefzbMATHADSMathSciNetGoogle Scholar
  19. Smale S.: Mathematical problems for the next century. Math. Int. 20, 7–15 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  20. Wintner A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton (1941)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jaume Llibre
    • 1
    Email author
  • Luis Fernando Mello
    • 2
  • Ernesto Perez-Chavela
    • 3
  1. 1.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBellaterra, Barcelona, CataloniaSpain
  2. 2.Instituto de Ciências ExatasUniversidade Federal de ItajubáItajubáBrazil
  3. 3.Departamento de MatemáticasUAM-IztapalapaIztapalapa, MexicoMexico

Personalised recommendations