Abstract
A stacked central configuration in the n-body problem is one that has a proper subset of the n-bodies forming a central configuration. In this paper we study the case where three bodies with masses m 1, m 2, m 3 (bodies 1, 2, 3) form an equilateral central configuration, and the other two with masses m 4, m 5 are symmetric with respect to the mediatrix of the segment joining 1 and 2, and they are above the triangle generated by {1, 2, 3}. We show the existence and non-existence of this kind of stacked central configurations for the planar 5-body problem.
This is a preview of subscription content, access via your institution.
References
Alfaro F., Perez-Chavela E.: Families of continua of central configurations in charged problems. Dyn. Cont. Disc. Impu. Sys. Series A: Math. Anal. 9, 463–475 (2002)
Boccaletti D., Pucacco G.: Theory of Orbits, vol. 1, Integrable systems and non-perturbative methods. Astronomy and Astrophysics Library. Springer, Berlin (1996)
Corbera M., Llibre J.: On the existence of central configurations of p nested regular polyhedra. Celest. Mech. Dyn. Astron. 106, 197–207 (2010)
Corbera M., Cors J.M., Llibre J.: On the central configurations of the planar 1+3 body problem. Celest. Mech. Dyn. Astron. 109, 27–43 (2011)
Euler L.: De moto rectilineo trium corporum se mutuo attahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767)
Gidea M., Llibre J.: Symmetric planar central configurations of five bodies: Euler plus two. Celest. Mech. Dyn. Astron. 106, 89–107 (2010)
Hagihara Y.: Celestial Mechanics, vol. 1. MIT Press, Massachusetts (1970)
Hampton M.: Stacked central configurations: new examples in the planar five-body problem. Nonlinearity 18, 2299–2304 (2005)
Hampton M., Moeckel R.: Finiteness of relative equilibria of the four-body problem. Invent. Math. 163, 289–312 (2006)
Lagrange J.L.: Essai sur le problème de trois corps, Ouvres, vol. 6. Gauthier-Villars, Paris (1873)
Llibre J., Mello L.F.: New central configurations for the planar 5-body problem. Celest. Mech. Dyn. Astron. 100, 141–149 (2008)
Moeckel R.: On central configurations. Math. Z. 205, 499–517 (1990)
Moulton F.R.: The straight line solutions of n bodies. Ann. Math. 12, 1–17 (1910)
Newton I.: Philosophi Naturalis Principia Mathematica. Royal Society, London (1687)
Piña E., Lonngi P.: Central configurations for the planar Newtonian four-body problem. Celest. Mech. Dyn. Astron. 108, 73–93 (2010)
Roberts G.E.: A continuum of relative equilibria in the five-body problem. Physica D 127, 141–145 (1999)
Saari D.: On the role and properties of central configurations. Celest. Mech. 21, 9–20 (1980)
Smale S.: Topology and mechanics II: the planar n-body problem. Invent. Math. 11, 45–64 (1970)
Smale S.: Mathematical problems for the next century. Math. Int. 20, 7–15 (1998)
Wintner A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton (1941)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Llibre, J., Mello, L.F. & Perez-Chavela, E. New stacked central configurations for the planar 5-body problem. Celest Mech Dyn Astr 110, 43–52 (2011). https://doi.org/10.1007/s10569-011-9342-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10569-011-9342-6
Keywords
- Planar central configurations
- n-body problem
- Stacked central configurations
- 5-body problem