Skip to main content
Log in

The 1/1 resonance in extrasolar systems

Migration from planetary to satellite orbits

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We present families of symmetric and asymmetric periodic orbits at the 1/1 resonance, for a planetary system consisting of a star and two small bodies, in comparison to the star, moving in the same plane under their mutual gravitational attraction. The stable 1/1 resonant periodic orbits belong to a family which has a planetary branch, with the two planets moving in nearly Keplerian orbits with non zero eccentricities and a satellite branch, where the gravitational interaction between the two planets dominates the attraction from the star and the two planets form a close binary which revolves around the star. The stability regions around periodic orbits along the family are studied. Next, we study the dynamical evolution in time of a planetary system with two planets which is initially trapped in a stable 1/1 resonant periodic motion, when a drag force is included in the system. We prove that if we start with a 1/1 resonant planetary system with large eccentricities, the system migrates, due to the drag force, along the family of periodic orbits and is finally trapped in a satellite orbit. This, in principle, provides a mechanism for the generation of a satellite system: we start with a planetary system and the final stage is a system where the two small bodies form a close binary whose center of mass revolves around the star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaugé C., Ferraz-Mello S.: Resonance trapping in the primordial solar nebula: the case of Stokes drag dissipation. Icarus 103, 301–318 (1993)

    Article  ADS  Google Scholar 

  • Beaugé C., Ferraz-Mello S., Michtchenko T.: Extrasolar planets in mean-motion resonance: apses alignment and asymmetric stationary solutions. Astrophys. J. 593, 1124–1133 (2003)

    Article  ADS  Google Scholar 

  • Beaugé C., Ferraz-Mello S., Michtchenko T.A.: Planetary migration and extrasolar planets in the 2/1 mean-motion resonance. MNRAS 365, 1160–1170 (2006)

    Article  ADS  Google Scholar 

  • Ferraz-Mello S., Beaugé C., Michtchenko T.A.: Evolution of migrating planet pairs in resonance. Celest. Mech. Dyn. Astron. 87, 99–112 (2003)

    Article  ADS  Google Scholar 

  • Ferraz-Mello S., Michtchenko T.A., Beaugé C. et al.: Regular motions in extra-solar planetary systems. In: Steves, B.A. (ed.) Chaotic Worlds: From Order to Disorder in Gravitational N-Body Systems, Vol. 227, pp. 255–288. Springer, Berlin (2006)

    Chapter  Google Scholar 

  • Giuppone C.A., Beaugé C., Michtchenko T.A., Ferraz-Mello S.: Dynamics of two planets in co-orbital motion. MNRAS 407, 390–398 (2010)

    Article  ADS  Google Scholar 

  • Gomes R.S.: The effect of nonconservative forces on resonance lock: stability and instability. Icarus 115, 47–59 (1996)

    Article  ADS  Google Scholar 

  • Hadjidemetriou J.D.: The continuation of periodic orbits from the restricted to the general three-body problem. Celest. Mech. 12, 155–174 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hadjidemetriou J.D.: Resonant periodic motion and the stability of extrasolar planetary systems. Celest. Mech. Dyn. Astron. 83, 141–154 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hadjidemetriou J.D.: Symmetric and asymmetric librations in extrasolar planetary systems: a global view. Celest. Mech. Dyn. Astron. 95, 225–244 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hadjidemetriou J.D., Psychoyos D., Voyatzis G.: The 1/1 resonance in extrasolar planetary systems. Celest. Mech. Dyn. Astron. 104, 23–38 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hadjidemetriou J.D., Voyatzis G.: On the dynamics of extrasolar planetary systems under dissipation. Migration of planets. Celest. Mech. Dyn. Astron. 107, 3–19 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hadjidemetriou, J.D., Voyatzis, G.: Different types of attractors in the three body problem perturbed by dissipative terms. IJBC (to appear) (2011)

  • Hénon, M.: Generating Families in the restricted three body problem, Lect. Notes Phys. m52 (1997)

  • Makó Z., Szenkovits F., Salamon J., Oláh-Gál R.: Stable and unstable orbits around mercury. Celest. Mech. Dyn. Astron. 108, 357–370 (2010)

    Article  ADS  MATH  Google Scholar 

  • Marchal C., Bozis G.: Hill stability and distance curves for the general three-body problem. Celest. Mech. 26, 311–333 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mikkola S., Innanen K., Wiegert P., Connors M., Brasser R.: Stability limits for the quasi-satellite orbit. MNRAS 369, 15–24 (2006)

    Article  ADS  Google Scholar 

  • Morbidelli A., Tsiganis K., Grida A., Levison H.F., Gomes R.: Dynamics of the giant planets of the solar system in the gaseous protoplanetary disk and their relation to the current orbital architecture. Astron. J. 134, 1790–1798 (2007)

    Article  ADS  Google Scholar 

  • Murray C.D., Dermott S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Nelson R.P., Papaloizou J.C.B.: The interaction of a giant planet with a disk with MHD turbulence—I, The initial turbulent disc models. MNRAS 339, 983–992 (2003a)

    Article  ADS  Google Scholar 

  • Nelson R.P., Papaloizou J.C.B.: The interaction of a giant planet with a disk with MHD turbulence—II. The interaction of the planet with the disk. MNRAS 339, 993–1005 (2003b)

    Article  ADS  Google Scholar 

  • Papadakis, K.E., Rodi, M.I.: Asymmetric periodic solutions in the restricted problem of three bodies, Earth Moon Planet 106, 37–53 (2010) (erratum in 106, 159)

    Google Scholar 

  • Papaloizou J.C.B.: Disk planet interactions: migration and resonances in extrasolar systems. Celest. Mech. Dyn. Astron. 87, 53–83 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Pars L.S.: A Treatise on Analytical Dynamics, Section 10.1 and 22. Heinemann, London (1965)

    Google Scholar 

  • Schwarz R., Suli A., Dvorak R., Pilat-Lohinger E.: Stability of Trojan planets in multi-planetary systems. Stability of Trojan planets in different dynamical systems. Celest. Mech. Dyn. Astron. 104, 69–84 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Smith A.W., Lissauer J.J.: Orbital stability of systems of closely spaced planets, II: configurations with coorbital planets. Celest. Mech. Dyn. Astron. 107, 487–500 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Voyatzis G., Hadjidemetriou J.D.: Symmetric and asymmetric librations in planetary and satellite orbits at the 2/1 resonance. Celest. Mech. Dyn. Astron. 93, 263–294 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Voyatzis G.: Chaos, order and periodic orbits in 3:1 resonant planetary dynamics. Astrophys. J. 675, 802–816 (2008)

    Article  ADS  Google Scholar 

  • Voyatzis G., Kotoulas T., Hadjidemetriou J.D.: On the 2/1 resonant planetary systems—periodic orbits and dynamical stability. MNRAS 395, 2147–2156 (2009)

    Article  ADS  Google Scholar 

  • Zagouras C.G., Perdios E., Ragos O.: New kinds of asymmetric orbits in the restricted three body problem. Astrophys. Space Sci. 240, 273–293 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Zhou, L.Y., Ferraz-Mello, S., Sun, Y.S.: Formation of the 3:1 MMR in 55CnC system. In: Sun, Y.S., Ferraz-Mello, S., Zhou, J.L. (eds.) I.A.U. Proceedings No.249, Exoplanets: Detection Formation and Dynamics, pp. 119–124 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Voyatzis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadjidemetriou, J.D., Voyatzis, G. The 1/1 resonance in extrasolar systems. Celest Mech Dyn Astr 111, 179–199 (2011). https://doi.org/10.1007/s10569-011-9341-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9341-7

Keywords

Navigation