Skip to main content
Log in

Stability of planetary systems with respect to masses

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The stability in the sense of Lagrange of the Sun–Jupiter–Saturn system and 47 UMa system with respect to masses on a time scale of 106 years was studied using the method of averaging and numerical methods. When the masses of Jupiter and Saturn increase by 20 times (approximately, more accurate value depends on a time-scale of stable motion), these planets can have close approaches. Close approaches appear when analyzing osculating elements; they are absent in the mean elements. A similar situation takes place in the case of 47 UMa and other exoplanetary systems. The study of Lagrange stability with respect to masses allows us to obtain upper limits for masses of extrasolar planets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Butler R.P., Marcy G.W.: A planet orbiting 47 Ursae Majoris. Astrophys. J. 464, L153–L156 (1996)

    Article  ADS  Google Scholar 

  • Butler R.P., Wright J.T., Marcy G.W. et al.: Catalog of nearby exoplanets. Astrophys. J. 646, 505–522 (2006)

    Article  ADS  Google Scholar 

  • Chambers J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999)

    Article  ADS  Google Scholar 

  • Chetaev, N.G.: Stability of motion. Gostekhisdat, Moscow – Leningrad (4th edition: 1990, Nauka, Moscow) (1946) (in Russian)

  • Everhart E.: Implicit single methods for integrating orbits. Celest. Mech. 10, 35–55 (1974)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Fischer D.A. et al.: A second planet orbiting 47 Ursae Majoris. Astrophys. J. 564, 1028–1034 (2002)

    Article  ADS  Google Scholar 

  • Georgakarakos N.: Stability criteria for hierarchical triple systems. Celest. Mech. Dyn. Astron. 100, 151–168 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Gladman B.: Dynamics of systems of two close planets. Icarus 106, 247–263 (1993)

    Article  ADS  Google Scholar 

  • Goldstein, D.: The near-optimality of Stormer methods for long time integrations of y′′ = g(y). Ph.D. Dissertation, Univ. of California, Los Angeles, Dept. of Mathematics (1996)

  • Goździewski K.: Stability of the 47 UMa planetary system. Astron. Astrophys. 393, 997–1013 (2002)

    Article  ADS  Google Scholar 

  • Hairer, E., Norsett, S.P., Wanner, G.: Solving ordinary differential equations I. Nonstiff problems. Second revised edition (1993)

  • Ito, T., Miyama, Sh.M.: An estimation of upper limit masses of υ And planets. In: Proceedings of 32nd Symposium Celest. Mech. University Advanced Studies, pp. 194–205. Hayama, Kanagawa, Japan (2000)

  • Ito T., Miyama Sh.M.: An estimation of upper limit masses of υ And planets. Astrophys. J. 552, 372–379 (2001)

    Article  ADS  Google Scholar 

  • Kuznetsov E.D., Kholshevnikov K.V.: Planet mass stability margin of two-planetary systems. Sol. Syst. Res. 43, 220–228 (2009)

    Article  ADS  Google Scholar 

  • Laughlin G., Chambers J., Fisher D.: A dynamical analysis of the 47 Ursae Majoris planetary system. Astrophys. J. 579, 455–467 (2002)

    Article  ADS  Google Scholar 

  • Marchal C., Bozis G.: Hill stability and distance curves for the general three-body problem. Celest. Mech. 26, 311–333 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Milani A., Nobili A.M.: On topological stability in the general three-body problem. Celest. Mech. 31, 213–240 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Nacozy P.E.: On the stability of the Solar System. Astron. J. 81, 787–791 (1976)

    Article  ADS  Google Scholar 

  • Nacozy P.E.: A discussion of long-term numerical solutions of the Jupiter–Saturn–Sun system. Celest. Mech. 16, 77–86 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  • Naef D., Mayor M., Beuzit J.L. et al.: The ELODIE survey for northern extra-solar planets. III. Three planetary candidates detected with ELODIE. Astron. Astrophys. 414, 351–359 (2004)

    Article  ADS  Google Scholar 

  • Pitjeva E.V.: The dynamical model of the planet motions and EPM ephemerides. Highlights Astron. 14, 470 (2007)

    ADS  Google Scholar 

  • Standish, E.M.: JPL planetary and lunar ephemerides, DE405/LE405. Interoffice Memorandum. 312.F-98-048. JPL. 18 p. (1998)

  • Sukhotin A.A., Kholshevnikov K.V.: Planetary orbits evolution for 200 000 years calculated by the method of Halphen–Goriachev. Astronomia i geodesia. Tomsk, Tomsk University Publ. 14, 5–21 (1986) (in Russian)

    ADS  Google Scholar 

  • Varadi, F.: NBI. A set of numerical integrators for the gravitational N-body problem. http://www.atmos.ucla.edu/~varadi (1999)

  • Wittenmyer R.A., Endl M., Cochran W.D.: Long-period objects in the extrasolar planetary systems 47 Ursae Majoris and 14 Herculis. Astrophys. J. 654, 625–632 (2007)

    Article  ADS  Google Scholar 

  • Wittenmyer R.A., Endl M., Cochran W.D. et al.: A search for multi-planet systems using the Hobby-Eberly telescope. Astrophys. J. Suppl. Ser. 182, 97–119 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard D. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kholshevnikov, K.V., Kuznetsov, E.D. Stability of planetary systems with respect to masses. Celest Mech Dyn Astr 109, 201–210 (2011). https://doi.org/10.1007/s10569-010-9324-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9324-0

Keywords

Navigation