Skip to main content
Log in

A minimal dynamical model for tidal synchronization and orbit circularization

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We study tidal synchronization and orbit circularization in a minimal model that takes into account only the essential ingredients of tidal deformation and dissipation in the secondary body. In previous work we introduced the model (Escribano et al. in Phys. Rev. E, 78:036216, 2008); here we investigate in depth the complex dynamics that can arise from this simplest model of tidal synchronization and orbit circularization. We model an extended secondary body of mass m by two point masses of mass m/2 connected with a damped spring. This composite body moves in the gravitational field of a primary of mass Mm located at the origin. In this simplest case oscillation and rotation of the secondary are assumed to take place in the plane of the Keplerian orbit. The gravitational interactions of both point masses with the primary are taken into account, but that between the point masses is neglected. We perform a Taylor expansion on the exact equations of motion to isolate and identify the different effects of tidal interactions. We compare both sets of equations and study the applicability of the approximations, in the presence of chaos. We introduce the resonance function as a resource to identify resonant states. The approximate equations of motion can account for both synchronization into the 1:1 spin-orbit resonance and the circularization of the orbit as the only true asymptotic attractors, together with the existence of relatively long-lived metastable orbits with the secondary in p:q (p and q being co-prime integers) synchronous rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Celletti A., Chierchia L.: Hamiltonian stability of spin–orbit resonances in celestial mechanics. Celest. Mech. Dyn. Astron. 76, 229–240 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Celletti A., Froeschle C., Lega E.: Dynamics of the conservative and dissipative spin–orbit problem. Planet Space Sci. 55, 889–899 (2007)

    Article  ADS  Google Scholar 

  • Correia A.C.M., Laskar J.: Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature 429, 848–850 (2004)

    Article  ADS  Google Scholar 

  • Darwin G.H.: Tidal Friction and Cosmogony. Cambridge University Press, Cambridge (1908)

    Google Scholar 

  • Dobbs-Dixon I., Lin D.N.C., Mardling R.A.: Spin–orbit evolution of short-period planets. Astrophys. J. 610, 464–476 (2004)

    Article  ADS  Google Scholar 

  • Efroimsky M., Williams J.G.: Tidal torques: a critical review of some techniques. Celest. Mech. Dyn. Astron. 104, 257–289 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Escribano B., Vanyo J., Tuval I., Cartwright J.H.E., González D.L., Piro O., Tél T.: Dynamics of tidal synchronization and orbit circularization of celestial bodies. Phys. Rev. E 78, 036216 (2008)

    Article  ADS  Google Scholar 

  • Gladman B., Quinn D.D., Nicholson P., Rand R.: Synchronous locking of tidally evolving satellites. Icarus 122, 166–192 (1996)

    Article  ADS  Google Scholar 

  • Goldreich P., Soter S.: Q in the solar system. Icarus 5, 375–389 (1966)

    Article  ADS  Google Scholar 

  • Hurford T.A., Greenberg R.: Tidal evolution by elongated primaries: implications for the Ida/Dactyl system. Geophys. Res. Lett. 27, 1595–1598 (2000)

    Article  ADS  Google Scholar 

  • Hut P.: Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981)

    MATH  ADS  Google Scholar 

  • Landau L.D., Lifshitz E.M.: Course of Theoretical Physics—Mechanics, vol 1. Pergamon Press, London (1981)

    Google Scholar 

  • Levin E.M.: Dynamic Analysis of Space Tether Missions. Advances in the Astronautical Sciences, vol. 126. AAS Publication, San Diego (2007)

    Google Scholar 

  • MacDonald G.J.F.: Tidal friction. Rev. Geophys. 2, 467–541 (1964)

    Article  ADS  Google Scholar 

  • Mardling R.A.: The role of chaos in the circularization of tidal capture binaries. I. The chaos boundary. Astrophys. J. 450, 722–731 (1995)

    Article  ADS  Google Scholar 

  • Mardling R.A.: The role of chaos in the circularization of tidal capture binaries. II. Long-time evolution. Astrophys. J. 450, 732–747 (1995)

    Article  ADS  Google Scholar 

  • Munk W.H., MacDonald G.J.F.: The Rotation of the Earth: A Geophysical Discussion. Cambridge University Press, Cambridge (1975)

    MATH  Google Scholar 

  • Murray C.D., Dermott S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Ott E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  • Rasio F.A., Tout C.A., Lubow S.H., Livio M.: Tidal decay of close planetary orbits. Astrophys. J. 470, 1187–1191 (1996)

    Article  ADS  Google Scholar 

  • Sarasola C., d’Anjou A., Torrealdea F.J., Moujahid A.: Energy-like functions for some dissipative chaotic systems. Int. J. Bifurcat Chaos 15, 2507–2521 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Sidorenko V.V., Celletti A.: A Spring-mass model of tethered satellite systems: properties of planar periodic motions. Celest. Mech. Dyn. Astron. 107, 209–231 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Tél T., Gruiz M.: Chaotic Dynamics, An introduction based on classical mechanics. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  • Witte M., Savonije G.J.: Orbital evolution by dynamical tides in the solar type stars. Astron. Astrophys. 386, 222–236 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Vanyó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanyó, J., Escribano, B., Cartwright, J.H.E. et al. A minimal dynamical model for tidal synchronization and orbit circularization. Celest Mech Dyn Astr 109, 181–200 (2011). https://doi.org/10.1007/s10569-010-9322-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9322-2

Keywords

Navigation