Skip to main content
Log in

Analytical results for solar sail optimal missions with modulated radial thrust

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The aim of this paper is to analyze the optimal trajectories of a spacecraft subjected to a modulated radial thrust, whose magnitude is inversely proportional to the square of the distance from the primary body. This case is representative of a Sun-facing solar sail with a passive attitude control system. In this study the sailcraft is assumed to perform a finite number of reorientation maneuvers to set the propelling acceleration to zero and generate suitable coasting arcs along the trajectory. Accordingly, the resulting generalized orbit is a sequence of either propelled or ballistic conic arcs, whose main characteristics (in terms of semimajor axis, eccentricity, and perihelion radius) can be calculated in closed form. As a result, the sailcraft optimal performance can be studied using an analytical approach. In particular, some compact relationships are drawn and discussed that allow one to find the optimal sailcraft characteristics required to reach a prescribed final orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Betts J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21(2), 193–207 (1998). doi:10.2514/2.4231

    Article  MATH  Google Scholar 

  • Boltz F.W.: Orbital motion under continuous radial thrust. J. Guid. Control Dyn. 14(3), 667–670 (1991). doi:10.2514/3.20690

    Article  ADS  Google Scholar 

  • Bryson A.E., Ho Y.C.: Applied Optimal Control. Ch. 2, pp. 71–89. Hemisphere Publishing Corporation, New York, NY (1975)

    Google Scholar 

  • Dachwald B., Mengali G., Quarta A.A., Macdonald M.: Parametric model and optimal control of solar sails with optical degradation. J. Guid. Control Dyn. 29(5), 1170–1178 (2006). doi:10.2514/1.20313

    Article  Google Scholar 

  • Dachwald, B., Ohndorf, A., Wie, B.: Solar sail trajectory optimization for the solar polar imager (SPI) mission. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit. AIAA Paper 2006-6177, Keystone, Colorado August 21–24 (2006)

  • Dachwald B., Macdonald M., McInnes C.R., Mengali G., Quarta A.A.: Impact of optical degradation on solar sail mission performance. J. Spacecr. Rockets 44(4), 740–749 (2007). doi:10.2514/1.21432

    Article  ADS  Google Scholar 

  • Dellnitz M., Ober-Blöbaum S., Post M., Schütze O., Thiere B.: A multi-objective approach to the design of low thrust space trajectories using optimal control. Celest. Mech. Dyn. Astron. 105(1–3), 33–59 (2009). doi:10.1007/s10569-009-9229-y

    Article  ADS  MATH  Google Scholar 

  • Kim M., Hall C.D.: Symmetries in the optimal control of solar sail spacecraft. Celest. Mech. Dyn. Astron. 92(4), 273–293 (2005). doi:10.1007/s10569-004-2530-x

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Kirpichnikov S.N., Kirpichnikova E.S., Polyakhova E.N., Shmyrov A.S.: Planar heliocentric roto-translatory motion of a spacecraft with a solar sail of complex shape. Celest. Mech. Dyn. Astron. 63(3–4), 255–269 (1995). doi:10.1007/BF00692290

    ADS  Google Scholar 

  • Koblik V., Polyakhova E., Sokolov L.: Controlled solar sail transfers into near-sun regions combined with planetary gravity-assist flybys. Celest. Mech. Dyn. Astron. 86(1), 59–80 (2003). doi:10.1023/A:1023626917595

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Lawden D.F.: Optimal Trajectories for Space Navigation, pp. 54–68. Butterworths, London (1963)

    MATH  Google Scholar 

  • Macdonald M., McInnes C.R.: Analytical control laws for planet-centered solar sailing. J. Guid. Control Dyn. 28(5), 1038–1048 (2005). doi:10.2514/1.11400

    Article  Google Scholar 

  • Macdonald M., McInnes C.R., Dachwald B.: Heliocentric solar sail orbit transfers with locally optimal control laws. J. Spacecr. Rockets 44(1), 273–276 (2007). doi:10.2514/1.17297

    Article  ADS  Google Scholar 

  • McInnes, C.R., Solar Sailing: Technology, Dynamics and Mission Applications. Springer-Praxis Series in Space Science and Technology, pp. 38–40, 121–129. Springer, Berlin (1999)

  • McInnes C.R.: Orbits in a generalized two-body problem. Journal of Guidance, Control, and Dynamics 26(5), 743–749 (2003). doi:10.2514/2.5129

    Article  Google Scholar 

  • McInnes C.R., Brown J.C.: The dynamics of solar sails with a non-point source of radiation pressure. Celest. Mech. Dyn. Astron. 49(3), 249–264 (1990). doi:10.1007/BF00049416

    Article  ADS  Google Scholar 

  • Mengali G., Quarta A.A.: Earth escape by ideal sail and solar-photon thrustor spacecraft. J. Guid. Control Dyn. 27(6), 1105–1108 (2004). doi:10.2514/1.10637

    Article  Google Scholar 

  • Mengali G., Quarta A.A.: Near-optimal solar-sail orbit-raising from low earth orbit. J. Spacecr. Rockets 42(5), 954–958 (2005a). doi:10.2514/1.14184

    Article  ADS  Google Scholar 

  • Mengali G., Quarta A.A.: Optimal control laws for axially symmetric solar sails. J. Spacecr. Rockets 42(6), 1130–1133 (2005b). doi:10.2514/1.17102

    Article  ADS  Google Scholar 

  • Mengali G., Quarta A.A.: Optimal three-dimensional interplanetary rendezvous using nonideal solar sail. J. Guid. Control Dyn. 28(1), 173–177 (2005c). doi:10.2514/1.8325

    Article  Google Scholar 

  • Mengali G., Quarta A.A.: Trajectory design with hybrid low-thrust propulsion system. J. Guid. Control Dyn. 30(2), 419–426 (2007). doi:10.2514/1.22433

    Article  Google Scholar 

  • Mengali G., Quarta A.A.: Escape from elliptic orbit using constant radial thrust. J. Guid. Control Dyn. 32(3), 1018–1022 (2009a). doi:10.2514/1.43382

    Article  Google Scholar 

  • Mengali G., Quarta A.A.: Solar sail near-optimal circular transfers with plane change. J. Guid. Control Dyn. 32(2), 456–463 (2009b). doi:10.2514/1.38079

    Article  Google Scholar 

  • Mengali G., Quarta A.A.: Solar sail trajectories with piecewise-constant steering laws. Aerosp. Sci. Technol. 13(8), 431–441 (2009c). doi:10.1016/j.ast.2009.06.007

    Article  Google Scholar 

  • Mengali G., Quarta A.A., Circi C., Dachwald B.: Refined solar sail force model with mission application. J. Guid. Control Dyn. 30(2), 512–520 (2007). doi:10.2514/1.24779

    Article  Google Scholar 

  • Otten M., McInnes C.R.: Near minimum-time trajectories for solar sails. J. Guid. Control Dyn. 24(3), 632–634 (2001). doi:10.2514/2.4758

    Article  Google Scholar 

  • Quarta A.A., Mengali G.: Optimal switching strategy for radially accelerated trajectories. Celest. Mech. Dyn. Astron. 105(4), 361–377 (2009). doi:10.1007/s10569-009-9233-2

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Racca G.D.: New challenges to trajectory design by the use of electric propulsion and other new means of wandering in the solar system. Celest. Mech. Dyn. Astron. 85(1), 1–24 (2003). doi:10.1023/A:1021787311087

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Rowe, W.M., Luedke, E.E., Edwards, D.K.: Thermal radiative properties of solar sail film materials. In: American Institute of Aeronautics and Astronautics and American Society of Mechanical Engineers, Thermophysics and Heat Transfer Conference, 2nd. AIAA Paper, 78–852, Palo Alto, CA 24–26 May (1978)

  • Sauer, C.G., Jr.: Optimum solar-sail interplanetary trajectories. In: AIAA/AAS Astrodynamics Conference. AIAA Paper 76–792, San Diego, CA August 18–20 (1976)

  • Stengel R.F.: Optimal Control and Estimation, pp. 222–254. Dover, Mineola, NY (1994)

    MATH  Google Scholar 

  • Stimpson, L.D., Greenfield, M.L., Jaworski, W., Wolf, F.: Thermal control of a solar sail. In: 2nd AIAA/ASME Thermophysics and Heat Transfer Conference. AIAA Paper 78-885, Palo Alto, CA May 24–26 (1978)

  • Wright J.L.: Space Sailing, pp. 223–226. Gordon and Breach Science Publisher, Berlin (1992)

    Google Scholar 

  • Yamakawa H.: Optimal radially accelerated interplanetary trajectories. J. Spacecr. Rockets 43(1), 116–120 (2006). doi:10.2514/1.13317

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Mengali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quarta, A.A., Mengali, G. Analytical results for solar sail optimal missions with modulated radial thrust. Celest Mech Dyn Astr 109, 147–166 (2011). https://doi.org/10.1007/s10569-010-9319-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9319-x

Keywords

Navigation