Skip to main content
Log in

Frozen orbits at high eccentricity and inclination: application to Mercury orbiter

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We hereby study the stability of a massless probe orbiting around an oblate central body (planet or planetary satellite) perturbed by a third body, assumed to lay in the equatorial plane (Sun or Jupiter for example) using a Hamiltonian formalism. We are able to determine, in the parameters space, the location of the frozen orbits, namely orbits whose orbital elements remain constant on average, to characterize their stability/unstability and to compute the periods of the equilibria. The proposed theory is general enough, to be applied to a wide range of probes around planet or natural planetary satellites. The BepiColombo mission is used to motivate our analysis and to provide specific numerical data to check our analytical results. Finally, we also bring to the light that the coefficient J 2 is able to protect against the increasing of the eccentricity due to the Kozai-Lidov effect and the coefficient J 3 determines a shift of the equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson J.D., Colombo G., Espsitio P.B., Lau E.L., Trager G.B.: The mass, gravity field, and ephemeris of mercury. Icarus 71, 337–349 (1987)

    Article  ADS  Google Scholar 

  • Breiter S., Elipe A.: Critical inclination in the main problem of a massive satellite. Cel. Mech. Dyn. Astron. 95, 287–297 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Brouwer D., Clemence G.: Methods of Celestial Mechanics. Academic Press, NY (1961)

    Google Scholar 

  • D’Hoedt S., Lemaître A.: Planetary long periodic terms in Mercury’s rotation: a two dimensional adiabatic approach. Cel. Mech. Dyn. Astron. 101, 127–139 (2008)

    Article  MATH  Google Scholar 

  • D’Hoedt S., Noyelles B., Dufey J., Lemaître A.: A secondary resonance in Mercury’s rotation. Cel. Mech. Dyn. Astron. 107, 93–100 (2010)

    Article  MATH  ADS  Google Scholar 

  • Dufey J., Noyelles B., Rambaux N., Lemaître A.: Latitudinal librations of Mercury with a fluid core. Icarus 203, 1–12 (2009)

    Article  ADS  Google Scholar 

  • Farago F., Laskar J.: High-inclination orbits in the secular quadrupolar three-body problem. Mon. Not. R. Astron. Soc. 401, 1189–1198 (2009)

    Article  ADS  Google Scholar 

  • Garcia D., de Pascale P., Jehn R.: Bepicolombo mercury cornerstone consolidated report on mission analysis. Tech. rep., MAO Working Paper No. 466, (2007)

  • Hairer E., Norsett S., Wanner G.: Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd edn. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  • Kozai Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astro. J. 67, 591–598 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  • Lara M., Russell R.P.: Computation of a science orbit about Europa. J. Guid. Control Dyn. 30, 259–263 (2007)

    Article  MathSciNet  Google Scholar 

  • Lara M., Palacián J.F., Yanguas P. et al.: Analytical theory for spacecraft motion about Mercury. Acta Astron. 66, 1022–1038 (2010)

    Article  Google Scholar 

  • Laskar J.: Secular evolution of the solar system over 10 million years. Astron. Astrophys. 198, 341–362 (1988)

    ADS  Google Scholar 

  • Laskar, J.: Frequency map analysis and quasiperiodic decomposition, in Hamiltonian systems and fourier analysis: new prospects for gravitational dynamics. In: Benest et al. (ed.) Cambridge Sci. Publ., pp. 99–129 (2005)

  • Lemaître A., Delsate N., Valk S.: A web of secondary resonances for large A/m geostationary debris. Cel. Mech. Dyn. Astron. 104, 383–402 (2009)

    Article  ADS  Google Scholar 

  • Lidov, M.L.: Evolution of the orbits of artificial satellites of planets as affected by gravitational perturbation from external bodies, 9, pp. 719–759, Planet. Space Sci. (1962)

  • Lucchesi D.M., Iafolla V.: The non-gravitational perturbations impact on the BepiColombo Radio Science Experiment and the key rôle of the ISA accelerometer: direct solar radiation and albedo effects. Cel. Mech. Dyn. Astron. 96, 99–127 (2006)

    Article  MATH  ADS  Google Scholar 

  • Paskowitz, M., Scheeres, D.: Orbit mechanics about planetary satellites. Am. Astron. Soc. 244, (2004)

  • Paskowitz M., Scheeres D.: Design of science orbits about planetary satellites: application to Europa. J. Guid. Control Dyn. 29, 1147–1158 (2006)

    Article  Google Scholar 

  • Russell R.P., Brinckerhoff A.T.: Circulating eccentric orbits around planetary moons. J. Guid. Control Dyn. 32, 424–436 (2009)

    Article  Google Scholar 

  • Russell R.P., Lara M.: Long-lifetime lunar repeat ground track orbits. J. Guid. Control Dyn. 30, 982–993 (2007)

    Article  MathSciNet  Google Scholar 

  • Saleh L.A., Rasio F.A.: The stability and dynamics of planets in tight binary systems. Astrophys. J. 694, 1566–1576 (2009)

    Article  ADS  Google Scholar 

  • San-Juan J., Lara M., Ferrer S.: Phase space structure around oblate planetary satellites. J. Guid. Control Dyn. 29, 113–120 (2006)

    Article  Google Scholar 

  • Scheeres D., Guman M., Villac B.: Stabillity analysis of planetary satellite orbiters: application to the europa orbiter. J. Guid. Control Dyn. 24, 778–787 (2001)

    Article  Google Scholar 

  • Seidelmann P.K. et al.: Report of the IAU/IAG working group on cartographic coordinates and rotational elements: 2006. Cel. Mech. Dyn. Astr. 98, 155–180 (2007)

    Article  MATH  ADS  Google Scholar 

  • Standish, E.M.: JPL planetary and lunar ephemeris, de405/le405, JPL Interoffice Memorandum IOM 312. D-98-048 (1998)

  • Stoer J., Bulirsch R.: Introduction to Numerical Analysis. Springer-Verlag, New York (1980)

    Google Scholar 

  • Sturm, C.: Mémoires présentés par divers savants àé1 l’Académie royale des Sciences de l’Institut de France, Vol.6, chap. Mémoire sur la résolution des équations numériques, (1835)

  • Tremaine S., Touma J., Namouni F.: Satellite dynamics on the Laplace surface. Astron. J. 1137, 3706–3717 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Delsate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delsate, N., Robutel, P., Lemaître, A. et al. Frozen orbits at high eccentricity and inclination: application to Mercury orbiter. Celest Mech Dyn Astr 108, 275–300 (2010). https://doi.org/10.1007/s10569-010-9306-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9306-2

Keywords

Navigation