Skip to main content

Spacecraft trajectories to the L3 point of the Sun–Earth three-body problem


Of the three collinear libration points of the Sun–Earth Circular Restricted Three-Body Problem (CR3BP), L3 is that located opposite to the Earth with respect to the Sun and approximately at the same heliocentric distance. Whereas several space missions have been launched to the other two collinear equilibrium points, i.e., L1 and L2, taking advantage of their dynamical and geometrical characteristics, the region around L3 is so far unexploited. This is essentially due to the severe communication limitations caused by the distant and permanent opposition to the Earth, and by the gravitational perturbations mainly induced by Jupiter and the close passages of Venus, whose effects are more important than those due to the Earth. However, the adoption of a suitable periodic orbit around L3 to ensure the necessary communication links with the Earth, or the connection with one or more relay satellites located at L4 or L5, and the simultaneous design of an appropriate station keeping-strategy, would make it possible to perform valuable fundamental physics and astrophysics investigations from this location. Such an opportunity leads to the need of studying the ways to transfer a spacecraft (s/c) from the Earth’s vicinity to L3. In this contribution, we investigate several trajectory design methods to accomplish such a transfer, i.e., various types of two-burn impulsive trajectories in a Sun-s/c two-body model, a patched conics strategy exploiting the gravity assist of the nearby planets, an approach based on traveling on invariant manifolds of periodic orbits in the Sun–Earth CR3BP, and finally a low-thrust transfer. We examine advantages and drawbacks, and we estimate the propellant budget and time of flight requirements of each.

This is a preview of subscription content, access via your institution.


  • Barrabés E., Ollé M.: Invariant Manifolds of L3 and horseshoe motion in the restricted three-body problem. Nonlinearity 9, 2065–2090 (2006)

    Article  ADS  Google Scholar 

  • Brison A.E., Ho Y.-C.: Applied Optimal Control. Blaisdell Publishing Company, Waltham (1969)

    Google Scholar 

  • Font, J.: The Role of Homoclinic and Heteroclinic Orbits in Two-Degrees of Freedom Hamiltonian Systems. Ph.D. Dissertation, Departament de Matematica. Aplicada i Analisi, Universitat de Barcelona (1990)

  • Gill P.E., Murray W., Saunders M.A.: Snopt: an sqp algorithm for large-scale constrained optimization. SIAM J. Optim. 12, 979–1006 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Gómez G., Koon W.S., Lo M.W., Marsden J., Masdemont J., Ross S.D.: Connecting orbits and invariant manifolds in the spatial three-body problem. Nonlinearity 17, 1571 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Hechler, M., Yanez, A.: Herschel/Planck Consolidated Report on Mission Analysis FP-MA-RP-0010-TOS/GMA (3.1) (2006)

  • Hou, X., Tang, J., Liu, L.: Transfer to the Collinear Libration Point L3 in the Sun–Earth + Moon System. Nasa Technical Report 20080012700 (2007)

  • Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Lo, M.W., Williams, B.G., Bollman, W.E., Han, D., Hahn, Y., et al.: Genesis Mission Design. AIAA Space Flight Mechanics, Paper No. AIAA 98–4468 (1998)

  • Senent J., Ocampo C., Capella A.: Low-thrust variable-specific-impulse transfers and guidance to unstable periodic orbits. J. Guid. Control Dyn. 28, 280–290 (2005)

    Article  Google Scholar 

  • Szebehely V.: Theory of Orbits. Academic Press, Massachusetts (1967)

    Google Scholar 

  • Tantardini, M.: Transfer Strategies to the L3 Libration Point of the Sun–Earth System. MS Thesis, Aerospace Engineering, Delft University of Technology, Delft (2009)

  • Vallado D.A.: Fundamentals of Astrodynamics and Applications. Microcosm Press, Hawthorne (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Marco Tantardini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tantardini, M., Fantino, E., Ren, Y. et al. Spacecraft trajectories to the L3 point of the Sun–Earth three-body problem. Celest Mech Dyn Astr 108, 215–232 (2010).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Two-body impulsive maneuvers
  • Patched conics
  • Gravity assist
  • Circular restricted three-body problem
  • Libration points
  • Periodic orbits
  • Invariant manifolds
  • Low-thrust