Skip to main content
Log in

Lagrange’s planetary equations for the motion of electrostatically charged spacecraft

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

A spacecraft that generates an electrostatic charge on its surface in a planetary magnetic field will be subject to a perturbative Lorentz force. Active modulation of the surface charge can take advantage of this electromagnetic perturbation to modify or to do work on the spacecraft’s orbit. Lagrange’s planetary equations are derived using the Lorentz force as the perturbation on a Keplerian orbit, incorporating orbital inclination and true anomaly for the first time for an electrostatically charged vehicle. The planetary equations reveal that orbital inclination is a second-order effect on the perturbation, explaining results found in earlier studies through numerical integration. All of the orbital elements are coupled, but the coupling notably does not depend on the magnitude of the electrostatic charge or on the strength of the magnetic field. Analytical expressions that characterize this coupling are tested with a propellantless escape example at Jupiter. A closed-form solution exists that constrains the set of equatorial orbits for which planetary escape is possible, and a sufficient condition is identified for escape from inclined orbits. The analytical solutions agree with results from the numerically integrated equations of motion to within a fraction of a percent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atchison, J., Peck, M.A.: Dynamics and feasibility of a millimeter-scale Lorentz-propelled satellite. In: AIAA Guidance, Navigation, and Control Conference. Hilton Head, SC. AIAA Paper 2007-6847 (2007)

  • Atchison J.A., Peck M.A.: Lorentz-augmented jovian orbit insertion. J. Guid. Control. Dyn. 32(2), 418–423 (2009)

    Article  Google Scholar 

  • Burns J.A.: Elementary derivation of the perturbation equations of Celestial Mechanics. Am. J. Phys. 44(10), 944–949 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  • Burns J.A., Lamy P.L., Soter S.: Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979)

    Article  ADS  Google Scholar 

  • Connerney J.E.P.: Magnetic fields of the outer planets. J. Geophys. Res. 98(E10), 18,659–18,679 (1993)

    Article  ADS  Google Scholar 

  • Dullin H.R., Horányi M., Howard J.E.: Generalizations of the Störmer problem for dust grain orbits. Physica D 171, 178–195 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Gangestad J.W., Pollock G.E., Longuski J.M.: Propellantless stationkeeping at Enceladus via the electromagnetic Lorentz force. J. Guid. Control. Dyn. 32(5), 1457–1466 (2009)

    Article  Google Scholar 

  • Gorman, W.R., Brownridge, J.D., Peck, M.: Experimental Study of a Lorentz Actuated Orbit. Published online at www.arXiv.org, archived as arXiv:0805:3332v1 (2008)

  • Griffiths D.J.: Introduction to Electrodynamics, pp. 242–246. 3rd edn. Prentice Hall, Englewood Cliffs (2004)

    Google Scholar 

  • Grotta-Ragazzo C., Kulesza M., Salomao P.A.S.: Equatorial dynamics of charged particles in planetary magnetospheres. Physica D 225, 169–183 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Howard J.E., Horányi M., Stewart G.R.: Global dynamics of charged dust particles in planetary magnetospheres. Phys. Rev. Lett. 83(20), 3993–3996 (1999)

    Article  ADS  Google Scholar 

  • Longuski J.M., Todd R.E., Koenig W.W.: Survey of nongravitational forces and space environmental torques: applied to the galileo. J. Guid. Control. Dyn. 15(3), 545–553 (1992)

    Article  ADS  Google Scholar 

  • Maxwell J.C.: On physical lines of force, part II. The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 51, 338–348 (1861)

    Google Scholar 

  • Peck, M.A.: Prospects and challenges for Lorentz-augmented orbits. In: AIAA Guidance, Navigation, and Control Conference. San Francisco, CA. AIAA Paper 2005-5995 (2005)

  • Peck M.A., Streetman B., Saaj C.M., Lappas V.: Spacecraft formation flying using Lorentz forces. J. Br. Interplanet. Soc. 60, 263–267 (2007)

    Google Scholar 

  • Pollock, G.E., Gangestad, J.W., Longuski, J.M.: Analysis of Lorentz spacecraft motion about Earth using the Hill-Clohessy-Wiltshire equations. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Honolulu, HI. AIAA Paper 2008-6762 (2008)

  • Pollock, G.E., Gangestad, J.W., Longuski, J.M.: Responsive coverage using propellantless satellites. In: Responsive Space Conference (RS6). Los Angeles, CA. AIAA Paper RS6-2008-2002 (2008)

  • Schaub H., Parker G.G., King L.B.: Challenges and prospects of Coulomb spacecraft formation control. J. Astronaut. Sci. 52(1–2), 169–193 (2004)

    MathSciNet  Google Scholar 

  • Streetman, B., Peck, M.A.: Gravity-assist maneuvers augmented by the Lorentz force. In: AIAA Guidance, Navigation, and Control Conference. Hilton Head, SC. AIAA Paper 2007-6846 (2007)

  • Streetman B., Peck M.A.: New synchronous orbits using the geomagnetic Lorentz force. J. Guid. Control. Dyn. 30(6), 1677–1690 (2007)

    Article  Google Scholar 

  • Streetman, B., Peck, M.A.: A general bang-bang control method for Lorentz augmented orbits. In: AAS Spaceflight Mechanics Meeting. Galveston, TX. AAS Paper 08-111 (2008)

  • Streetman B., Peck M.A.: Gravity-assist maneuvers augmented by the Lorentz force. J. Guid. Control Dyn. 32(5), 1639–1647 (2009)

    Article  Google Scholar 

  • Vokrouhlicky D.: The geomagnetic effects on the motion of an electrostatically charged artificial satellite. Celest. Mech. Dyn. Astron. 46, 85–104 (1989)

    Article  MATH  ADS  Google Scholar 

  • Vokrouhlicky D.: Lorentz force perturbations of the orbit of an electrically charged satellite—case of varying charge. Bull. Astron. Inst. Czechoslov. 41(4), 205–211 (1990)

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph W. Gangestad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangestad, J.W., Pollock, G.E. & Longuski, J.M. Lagrange’s planetary equations for the motion of electrostatically charged spacecraft. Celest Mech Dyn Astr 108, 125–145 (2010). https://doi.org/10.1007/s10569-010-9297-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9297-z

Keywords

Navigation