Innovative methods of correlation and orbit determination for space debris

  • Davide Farnocchia
  • Giacomo Tommei
  • Andrea Milani
  • Alessandro Rossi
Original Article


We propose two algorithms to provide a full preliminary orbit of an Earth-orbiting object with a number of observations lower than the classical methods, such as those by Laplace and Gauss. The first one is the Virtual debris algorithm, based upon the admissible region, that is the set of the unknown quantities corresponding to possible orbits for a given observation for objects in Earth orbit (as opposed to both interplanetary orbits and ballistic ones). A similar method has already been successfully used in recent years for the asteroidal case. The second algorithm uses the integrals of the geocentric 2-body motion, which must have the same values at the times of the different observations for a common orbit to exist. We also discuss how to account for the perturbations of the 2-body motion, e.g., the J2 effect.


Space debris Orbit determination Admissible region Keplerian integrals Virtual debris algorithm Radar attributable Linkage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bini D.A.: Numerical computation of polynomial zeros by means of Aberth’s method. Numer. Algorithms 13, 179–200 (1996)MATHCrossRefMathSciNetADSGoogle Scholar
  2. Cox D.A., Little J.B., O’Shea D.: Ideals, varieties and algorithms. Springer, London (1996)MATHGoogle Scholar
  3. Fujimoto K., Maruskin J.D., Scheeres D.J.: Circular and zero-inclination solutions for optical observations of Earth-orbiting objects. Celest. Mech. Dyn. Astron. 106, 157–182 (2010)CrossRefADSGoogle Scholar
  4. Gronchi, G.F., Dimare, L., Milani, A.: Orbit determination with the two-body integrals. Celest. Mech. Dyn. Astron. (2010). doi:10.1007/s10569-010-9271-9
  5. Maruskin, J.M., Scheeres, D.J.: Metrics on the space of bounded Keplerian orbits and space situational awareness. In: Proceedings of the 48th IEEE Conference and Decision Control, pp. 5912–5917 (2009)Google Scholar
  6. Maruskin J.M., Scheeres D.J., Alfriend K.T.: Correlation of optical observations of objects in earth orbit. J. Guid. Control Dyn. 32, 194–209 (2009)CrossRefGoogle Scholar
  7. Milani A.: The asteroid identification problem I: recovery of lost asteroids. Icarus 137, 269–292 (1999)CrossRefADSGoogle Scholar
  8. Milani A., Sansaturio M.E., Chesley S.R.: The asteroid identification problem IV: Attributions. Icarus 151, 150–159 (2001)CrossRefADSGoogle Scholar
  9. Milani A., Gronchi G.F., de’Michieli Vitturi M., Knežević Z.: Orbit determination with very short arcs. I admissible regions. Celest. Mech. Dyn. Astron. 90, 59–87 (2004)MATHCrossRefADSGoogle Scholar
  10. Milani A., Gronchi G.F., Knežević Z., Sansaturio M.E., Arratia O.: Orbit determination with very short arcs. II identifications. Icarus 79, 350–374 (2005)CrossRefADSGoogle Scholar
  11. Milani A., Knežević Z.: From Astrometry to Celestial Mechanics: Orbit determination with bery short arcs. Celest. Mech. Dyn. Astron. 92, 1–18 (2005)MATHCrossRefADSGoogle Scholar
  12. Milani A., Gronchi G.F.: Theory of orbit determination. Cambridge University Press, Cambridge (2010)MATHGoogle Scholar
  13. Milani, A., Gronchi, G.F., Farnocchia, D., Tommei, G., Dimare, L.: Optimization of space surveillance resources by innovative preliminary orbit methods. In: Proceedings of the Fifth European Conference on Space Debris. 30 March–2 April 2009, Darmstadt, Germany, SP-672 on CD-RomGoogle Scholar
  14. Roy A.E.: Orbital motion. Institute of Physics Publishing, London (2005)Google Scholar
  15. Taff L.G., Hall D.L.: The use of angles and angular rates. I - Initial orbit determination. Celest. Mech. 16, 481–488 (1977)CrossRefADSGoogle Scholar
  16. Tommei G., Milani A., Rossi A.: Orbit determination of space debris: Admissibl regions. Celest. Mech. Dyn. Astron. 97, 289–304 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  17. Tommei, G., Milani, A., Farnocchia, D., Rossi, A.: Correlation of space debris observations by the virtual debris algorithm. In: Proceedings of the Fifth European Conference on Space Debris. 30 March–2 April 2009, Darmstadt, Germany, SP-672 on CD-RomGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Davide Farnocchia
    • 1
  • Giacomo Tommei
    • 1
  • Andrea Milani
    • 1
  • Alessandro Rossi
    • 2
  1. 1.Department of MathematicsUniversity of PisaPisaItaly
  2. 2.ISTI/CNRPisaItaly

Personalised recommendations