Light-time computations for the BepiColombo Radio Science Experiment

Original Article


The Radio Science Experiment is one of the on board experiments of the Mercury ESA mission BepiColombo that will be launched in 2014. The goals of the experiment are to determine the gravity field of Mercury and its rotation state, to determine the orbit of Mercury, to constrain the possible theories of gravitation (for example by determining the post-Newtonian parameters), to provide the spacecraft position for geodesy experiments and to contribute to planetary ephemerides improvement. This is possible thanks to a new technology which allows to reach great accuracies in the observables range and range rate; it is well known that a similar level of accuracy requires studying a suitable model taking into account numerous relativistic effects. In this paper we deal with the modelling of the space-time coordinate transformations needed for the light-time computations and the numerical methods adopted to avoid rounding-off errors in such computations.


Mercury Interplanetary tracking Light-time Relativistic effects Range Range rate Shapiro effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashby, N., Bertotti, B.: Accurate light-time correction due to a gravitating mass, ArXiv e-prints 0912.2705 (2009)Google Scholar
  2. Bertotti B., Iess L., Tortora P.: A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376 (2003)CrossRefADSGoogle Scholar
  3. Damour T., Soffel M., Hu C.: General-relativistic celestial mechanics. IV. Theory of satellite motion. Phys. Rev. D 49, 618–635 (1994)CrossRefMathSciNetADSGoogle Scholar
  4. Iess L., Boscagli G.: Advanced radio science instrumentation for the mission BepiColombo to Mercury. Plan. Sp. Sci. 49, 1597–1608 (2001)CrossRefADSGoogle Scholar
  5. Klioner, S.A., Zschocke, S.: GAIA-CA-TN-LO-SK-002-1 report (2007)Google Scholar
  6. Klioner S.A.: Relativistic scaling of astronomical quantities and the system of astronomical units. Astron. Astrophys. 478, 951–958 (2008)CrossRefADSGoogle Scholar
  7. Klioner, S.A., Capitaine, N., Folkner, W., Guinot, B., Huang, T.Y., Kopeikin, S., Petit, G., Pitjeva, E., Seidelmann, P.K., Soffel, M.: Units of relativistic time scales and associated quantities. In: Klioner, S., Seidelmann, P.K., Soffel, M. (eds.) Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, IAU Symposium 261, 79–84 (2010)Google Scholar
  8. Milani A., Vokrouhlický D., Villani D., Bonanno C., Rossi A.: Testing general relativity with the BepiColombo Radio Science Experiment. Phys. Rev. D 66, 082001 (2002)CrossRefADSGoogle Scholar
  9. Milani A., Gronchi G.:F.: Theory of Orbit Determination. Cambridge University Press, Cambridge (2010)MATHGoogle Scholar
  10. Milani, A., Tommei, G., Vokrouhlický, D., Latorre, E., Cicalò, S.: Relativistic models for the BepiColombo radioscience experiment. In: Klioner, S., Seidelmann, P.K., Soffel, M. (eds.) Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, IAU Symposium 261, 356–365 (2010)Google Scholar
  11. Moyer T.D.: Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. Wiley-Interscience, New York (2003)CrossRefGoogle Scholar
  12. Shapiro I.I.: Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964)CrossRefMathSciNetADSGoogle Scholar
  13. Soffel M., Klioner S.A., Petit G., Kopeikin S.M., Bretagnon P., Brumberg V.A., Capitaine N., Damour T., Fukushima T., Guinot B., Huang T.-Y., Lindegren L., Ma C., Nordtvedt K., Ries J.C., Seidelmann P.K., Vokrouhlický D., Will C.M., Xu C.: The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron. J. 126, 2687–2706 (2003)CrossRefADSGoogle Scholar
  14. Teyssandier P., Le Poncin-Lafitte C.: General post-Minkowskian expansion of time transfer functions. Class. Quantum Grav. 25, 145020 (2008)CrossRefMathSciNetADSGoogle Scholar
  15. Will C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  16. Yeomans D.K., Chodas P.W., Keesey M.S., Ostro S.J., Chandler J.F., Shapiro I.I.: Asteroid and comet orbits using radar data. Astron. J. 103, 303–317 (1992)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PisaPisaItaly
  2. 2.Institute of AstronomyCharles UniversityPrague 8Czech Republic

Personalised recommendations