A motivating exploration on lunar craters and low-energy dynamics in the Earth–Moon system

  • Elisa Maria Alessi
  • Gerard Gómez
  • Josep J. Masdemont
Article

Abstract

It is known that most of the craters on the surface of the Moon were created by the collision of minor bodies of the Solar System. Main Belt Asteroids, which can approach the terrestrial planets as a consequence of different types of resonance, are actually the main responsible for this phenomenon. Our aim is to investigate the impact distributions on the lunar surface that low-energy dynamics can provide. As a first approximation, we exploit the hyberbolic invariant manifolds associated with the central invariant manifold around the equilibrium point L2 of the Earth–Moon system within the framework of the Circular Restricted Three-Body Problem. Taking transit trajectories at several energy levels, we look for orbits intersecting the surface of the Moon and we attempt to define a relationship between longitude and latitude of arrival and lunar craters density. Then, we add the gravitational effect of the Sun by considering the Bicircular Restricted Four-Body Problem. In the former case, as main outcome, we observe a more relevant bombardment at the apex of the lunar surface, and a percentage of impact which is almost constant and whose value depends on the assumed Earth–Moon distance dEM. In the latter, it seems that the Earth–Moon and Earth–Moon–Sun relative distances and the initial phase of the Sun θ0 play a crucial role on the impact distribution. The leading side focusing becomes more and more evident as dEM decreases and there seems to exist values of θ0 more favorable to produce impacts with the Moon. Moreover, the presence of the Sun makes some trajectories to collide with the Earth. The corresponding quantity floats between 1 and 5 percent. As further exploration, we assume an uniform density of impact on the lunar surface, looking for the regions in the Earth–Moon neighbourhood these colliding trajectories have to come from. It turns out that low-energy ejecta originated from high-energy impacts are also responsible of the phenomenon we are considering.

Keywords

Lunar craters Low-energy impacts Circular restricted 3-body problem Invariant manifolds Bicircular 4-body problem Knuth shuffle algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bottke W.F., Morbidelli A., Jedicke R., Petit J.M., Levison H.F., Michel P., MetcalfeT.S.: Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156, 399–433 (2002)CrossRefADSGoogle Scholar
  2. Cronin J., Richards P.B., Russell L.H.: Some periodic solutions of a four-body problem. Icarus 3, 423–428 (1964)CrossRefMathSciNetADSGoogle Scholar
  3. Gabern Guilera, F.: On the dynamics of the Trojan asteroids. Ph.D Thesis, Universitat de Barcelona (2003)Google Scholar
  4. Gladman B.J., Burns J.A., Duncan M., Lee P., Levison H.F.: The exchange of impact ejecta between terrestrial planets. Science 271, 1387–1392 (1996)CrossRefADSGoogle Scholar
  5. Goldreich P.: History of the lunar orbit. Rev. Geophys. 4, 411–439 (1966)CrossRefADSGoogle Scholar
  6. Gómez G., Jorba À., Masdemont J., Simó C.: Dynamics and Mission Design near Libration Point Orbits-vol. 3: Advanced Methods for Collinear Points. World Scientific, Singapore (2000)Google Scholar
  7. Gómez G., Mondelo J.M.: The dynamics around the collinear equilibrium points of the RTBP. Physica D 157, 283–321 (2001)MATHCrossRefMathSciNetADSGoogle Scholar
  8. Gómez G., Koon W.S., Lo M.W., Marsden J.E., Masdemont J., Ross S.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)MATHCrossRefMathSciNetADSGoogle Scholar
  9. Hartmann, W.K.: Moon origin: the impact-trigger hypothesis. In: Hartmann, W.K., Phillips, R.J., Taylor, G.J. (eds.) Origin of the Moon, pp. 579–608 (1986)Google Scholar
  10. Horedt G.P., Neukum G.: Cratering rate over the surface of a synchronous satellite. Icarus 60, 710–717 (1984)CrossRefADSGoogle Scholar
  11. Knuth D.E.: The Art of Computer Programming-vol. 1. Addison–Wesley, Reading, Massachusetts (1997)MATHGoogle Scholar
  12. Le Feuvre, M., Wieczorek, M.A.: The asymmetric cratering history of the Moon. In: Lunar and Planetary Science Conference XXXVI (2005)Google Scholar
  13. Le Feuvre, M.: Modéliser le bombardement des planètes et des lunes. Application à la datation par comptage des cratères., Ph.D Thesis, Institut de Physique du Globe de Paris (2008)Google Scholar
  14. Llibre J., Martínez R., Simó C.: Transversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L 2 in the restricted three body-problem. J. Differ. Equ. 58, 104–156 (1985)MATHCrossRefGoogle Scholar
  15. Marchi S., Mottola S., Cremonese G., Massironi M., Martellato E.: A new chronology for the Moon and Mercury. Astron. J. 137, 4936–4948 (2009)CrossRefADSGoogle Scholar
  16. Masdemont J.J.: High order expansions of invariant manifolds of libration point orbits with applications to mission design. Dyn. Syst. Int. J. 20, 59–113 (2005)MATHCrossRefMathSciNetGoogle Scholar
  17. Mazumder R., Arima M.: Tidal rhytmites and their implications. Earth-Sci. Rev. 69, 79–95 (2005)CrossRefADSGoogle Scholar
  18. Melosh H.J.: Impact Cratering. Oxford University Press, New York (1999)Google Scholar
  19. Morota T., Furumoto M.: Asymmetrical distribution of rayed craters on the Moon. Earth Planet. Sci. Lett. 206, 315–323 (2003)CrossRefADSGoogle Scholar
  20. Neukum G., Ivanov B.A., Hartmann W.K.: Cratering records in the inner solar system in relation to the lunar reference system. Chronol. Evol. Mars 96, 55–86 (2001)Google Scholar
  21. Stoffler D., Ryder G.: Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Sci. Rev. 96, 9–54 (2001)CrossRefADSGoogle Scholar
  22. Szebehely V.: Theory of Orbits. Academic Press, New York (1967)Google Scholar
  23. Tomasella L., Marzari F., Vanzani V.: Evolution of the Earth obliquity after the tidal expansion of the Moon orbit. Planet. Space Sci. 44, 427–430 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Elisa Maria Alessi
    • 1
  • Gerard Gómez
    • 1
  • Josep J. Masdemont
    • 2
  1. 1.IEEC and Dpt. Matemàtica Aplicada i AnàlisiUniversitat de BarcelonaBarcelonaSpain
  2. 2.IEEC and Dpt. Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations