Skip to main content
Log in

Orbit determination with the two-body integrals

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We investigate a method to compute a finite set of preliminary orbits for solar system bodies using the first integrals of the Kepler problem. This method is thought for the applications to the modern sets of astrometric observations, where often the information contained in the observations allows only to compute, by interpolation, two angular positions of the observed body and their time derivatives at a given epoch; we call this set of data attributable. Given two attributables of the same body at two different epochs we can use the energy and angular momentum integrals of the two-body problem to write a system of polynomial equations for the topocentric distance and the radial velocity at the two epochs. We define two different algorithms for the computation of the solutions, based on different ways to perform elimination of variables and obtain a univariate polynomial. Moreover we use the redundancy of the data to test the hypothesis that two attributables belong to the same body (linkage problem). It is also possible to compute a covariance matrix, describing the uncertainty of the preliminary orbits which results from the observation error statistics. The performance of this method has been investigated by using a large set of simulated observations of the Pan-STARRS project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bate R.R., Mueller D.D., White J.E.: Fundamentals of Astrodynamics. Dover publications, New York (1971)

    Google Scholar 

  • Bini D.A: Numerical computation of polynomial zeros by means of Aberth method, Numer. Algorithms 13(3–4), 179–200 (1997)

    MathSciNet  Google Scholar 

  • Cox D.A., Little J.B., O’Shea D.: Ideals, Varieties and Algorithms. Springer, New York (1996)

    MATH  Google Scholar 

  • Gauss C.F.: Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium (1809), reprinted by Dover publications, New York (1963)

  • Gronchi G.F.: On the stationary points of the squared distance between two ellipses with a common focus. SIAM J. Sci. Comp. 24(1), 61–80 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Gronchi G.F.: Multiple solutions in preliminary orbit determination from three observations. Celest. Mech. Dyn. Astron. 103(4), 301–326 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Kubica J., Denneau L., Grav T., Heasley J., Jedicke R., Masiero J., Milani A., Moore A., Tholen D., Wainscoat R.J.: Efficient intra- and inter-night linking of asteroid detections using kd-trees. Icarus 189, 151–168 (2007)

    Article  ADS  Google Scholar 

  • Laplace P.S.: Mém. Acad. R. Sci. Paris, in Laplace’s collected works 10, 93–146 (1780)

    Google Scholar 

  • Leuschner A.O. On the Laplacean orbit methods. Proceedings of the ICM, 209–217 (1912)

  • Merton G.: A modification of Gauss’s method for the determination of orbits. MNRAS 85, 693–731 (1925)

    ADS  Google Scholar 

  • Milani A., Sansaturio M.E., Chesley S.R.: The asteroid identification problem IV: Attributions. Icarus 151, 150–159 (2001)

    Article  ADS  Google Scholar 

  • Milani A., Gronchi G.F., de’Michieli Vitturi M., Knežević Z.: Orbit determination with very short arcs I. Admissible regions. Celest. Mech. Dyn. Astron. 90, 59–87 (2004)

    Article  MATH  ADS  Google Scholar 

  • Milani A., Gronchi G.F., Knežević Z., Sansaturio M.E., Arratia O.: Orbit determination with very short arcs II. Identifications. Icarus 79, 350–374 (2005)

    Article  ADS  Google Scholar 

  • Milani A., Gronchi G.F., Knežević Z.: New definition of discovery for solar system objects. Earth Moon Planets 100, 83–116 (2007)

    Article  MATH  ADS  Google Scholar 

  • Milani A., Gronchi G.F., Farnocchia D., Knežević Z., Jedicke R., Denneau L., Pierfederici F.: Topocentric orbit determination: algorithms for the next generation surveys. Icarus 195, 474–492 (2008)

    Article  ADS  Google Scholar 

  • Milani A., Gronchi G.F.: Theory of Orbit Determination. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  • Plummer, H.C.: An Introductory Treatise on Dynamical Astronomy. Cambridge University press (1918), reprinted by Dover publications, New York (1960)

  • Poincaré H.: Sur la détermination des orbites par la méthode de Laplace. Bull. Astrono. 23, 161–187 (1906)

    Google Scholar 

  • Taff L.G., Hall D.L.: The use of angles and angular rates. I—Initial orbit determination. Celest. Mech. 16, 481–488 (1977)

    Article  ADS  Google Scholar 

  • Taff L.G., Hall D.L.: The use of angles and angular rates. II—Multiple observation initial orbit determination. Celest. Mech. 21, 281–290 (1980)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Gronchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gronchi, G.F., Dimare, L. & Milani, A. Orbit determination with the two-body integrals. Celest Mech Dyn Astr 107, 299–318 (2010). https://doi.org/10.1007/s10569-010-9271-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9271-9

Keywords

Navigation