Explicit algorithmic regularization in the few-body problem for velocity-dependent perturbations


A new algorithm is presented for the numerical integration of second-order ordinary differential equations with perturbations that depend on the first derivative of the dependent variables with respect to the independent variable; it is especially designed for few-body problems with velocity-dependent perturbations. The algorithm can be used within extrapolation methods for enhanced accuracy, and it is fully explicit, which makes it a competitive alternative to standard discretization methods.

This is a preview of subscription content, access via your institution.


  1. Bulirsch R., Stoer J.: Numerical treatment of ordinary differential equations by extrapolation methods. Numerische Mathematik 8, 1–13 (1966)

    MATH  Article  MathSciNet  Google Scholar 

  2. Chambers J.: Symplectic integrators with complex time steps. Astron. J. 126, 1119–1126 (2003)

    Article  ADS  Google Scholar 

  3. Dunning, R.: The orbital mechanics of flight mechanics. Tech. rep. (1973)

  4. Gragg W.: On extrapolation algorithms for ordinary initial value problems. SIAM J. Numer. Anal. 2, 384–403 (1965)

    MathSciNet  Google Scholar 

  5. Hairer E., Stoffer D.: Reverisble long-term integration with variable step sizes. SIAM J. Sci. Comput. 18, 257–269 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  6. Hairer E., Lubich C., Wanner G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2006)

    Google Scholar 

  7. Harfst S., Gualandris A., Merritt D., Mikkola S.: A hybrid N-body code incorporating algorithmic regularization and post-newtonian forces. Mon. Not. R. Astron. Soc. 389, 2–12 (2008)

    Article  ADS  Google Scholar 

  8. Kane C., Marsden J., Ortiz M., West M.: Variational integrators and the newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49, 1295–1325 (2000)

    MATH  Article  MathSciNet  Google Scholar 

  9. Kirk D.: Optimal Control Theory. An Introduction. Dover Publications, Mineola, NY (2004)

    Google Scholar 

  10. Marsden J., West M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  11. Meditch J.: On the problem of optimal thrust for a lunar soft landing. IEEE Trans. Automat. Contr. 4, 477–484 (1964)

    Article  MathSciNet  Google Scholar 

  12. Mikkola S., Aarseth S.: A time-transformed leapfrog scheme. Celest. Mech. Dyn. Astron. 84, 343–354 (2002)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  13. Mikkola S., Merritt D.: Algorithmic regularization with velocity-dependent forces. Mon. Not. R. Astron. Soc. 372, 219–223 (2006)

    Article  ADS  Google Scholar 

  14. Mikkola S., Merritt D.: Implementing few-body algorithmic regularization with post-newtonian terms. Astron. J. 135, 2398–2405 (2008)

    Article  ADS  Google Scholar 

  15. Mikkola S., Tanikawa K.: Algorithmic regularization of the few-body problem. Mon. Not. R. Astron. Soc. 310, 745–749 (1999a)

    Article  ADS  Google Scholar 

  16. Mikkola S., Tanikawa K.: Explicit symplectic algorithms for time-transformed hamiltonians. Celest. Mech. Dyn. Astron. 74, 287–295 (1999b)

    MATH  Article  ADS  Google Scholar 

  17. Mititelu G.: Analytical solutions for the equations of motion of a space vehicle during the atmospheric re-entry phase on a 2-D trajectory. Celest. Mech. Dyn. Astron. 103, 327–342 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  18. Pástor P., Klačka J., Kómar L.: Motion of dust in mean motion resonances with planets. Celest. Mech. Dyn. Astron. 103, 343–364 (2009)

    Article  Google Scholar 

  19. Pavlis, N., Holmes, S., Kenyon, S., Factor, J.: An earth gravitational model to degree 2160: EGM2008. presented at the 2008 general assembly of the European geosciences union, Vienna, Austria, 13–18 April (2008)

  20. Preto M., Tremaine S.: A class of symplectic integrators with adaptive timestep for separable hamiltonian systems. Astron. J. 118, 2532–2541 (1999)

    Article  ADS  Google Scholar 

  21. Soffel M.: Relativity in Astrometry. Celestial Mechanics and Geodesy. Springer, Berlin (1989)

    Google Scholar 

  22. Stengel R.: Optimal Control and Estimation. Dover Publications, Mineola, NY (1994)

    Google Scholar 

  23. Vallado D.: Fundamentals of Astrodynamics and Applications, Space Technology Library, vol. 21. Springer, Hawthorne, CA (2007)

    Google Scholar 

  24. Yoshida H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Christian Hellström.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hellström, C., Mikkola, S. Explicit algorithmic regularization in the few-body problem for velocity-dependent perturbations. Celest Mech Dyn Astr 106, 143–156 (2010). https://doi.org/10.1007/s10569-009-9248-8

Download citation


  • Algorithmic regularization
  • Extrapolation methods
  • Auxiliary velocity algorithm (AVA)
  • Bulirsch-Stoer