Celestial Mechanics and Dynamical Astronomy

, Volume 105, Issue 4, pp 329–336 | Cite as

A Mercury orientation model including non-zero obliquity and librations

Open Access
Original Article

Abstract

Planetary orientation models describe the orientation of the spin axis and prime meridian of planets in inertial space as a function of time. The models are required for the planning and execution of Earth-based or space-based observational work, e.g. to compute viewing geometries and to tie observations to planetary coordinate systems. The current orientation model for Mercury is inadequate because it uses an obsolete spin orientation, neglects oscillations in the spin rate called longitude librations, and relies on a prime meridian that no longer reflects its intended dynamical significance. These effects result in positional errors on the surface of ~1.5 km in latitude and up to several km in longitude, about two orders of magnitude larger than the finest image resolution currently attainable. Here we present an updated orientation model which incorporates modern values of the spin orientation, includes a formulation for longitude librations, and restores the dynamical significance to the prime meridian. We also use modern values of the orbit normal, spin axis orientation, and precession rates to quantify an important relationship between the obliquity and moment of inertia differences.

Keywords

Planets rotation Mercury Gravity 

References

  1. Anderson J.D., Colombo G., Esposito P.B., Lau E.L., Trager G.B.: The mass, gravity field, and ephemeris of Mercury. Icarus 71, 337–349 (1987)CrossRefADSGoogle Scholar
  2. Davies M.E., Abalakin V.K., Duncombe R.L., Masursky H., Morando B., Owen T.C., Seidelmann P.K., Sinclair A.T., Wilkins G.A., Cross C.A.: Report of the IAU working group on cartographic coordinates and rotational elements of the planets and satellites. Celest. Mech. 22, 205–230 (1980)CrossRefMathSciNetADSGoogle Scholar
  3. Davies M.E., Abalakin V.K., Lieske J.H., Seidelmann P.K., Sinclair A.T., Sinzi A.M., Smith B.A., Tjuflin Y.S.: Report of the IAU working group on cartographic coordinates and rotational elements of the planets and satellites—1982. Celest. Mech. 29, 309–321 (1983)CrossRefADSGoogle Scholar
  4. Davies M.E., Abalakin V.K., Bursa M., Lederle T., Lieske J.H., Rapp R.H., Seidelman P.K., Singclair A.T., Tejfel V.G., Tjuflin Y.S.: Report of the IAUIAG COSPAR working group on cartographic coordinates and rotational elements of the planets and satellites: 1985. Celest. Mech. 39, 103–113 (1985)ADSGoogle Scholar
  5. Davies M.E., Abalakin V.K., Bursa M., Hunt G.E., Lieske J.H.: Report of the IAU/IAG/COSPAR working group on cartographic coordinates and rotational elements of the planets and satellites—1988. Celest. Mech. Dyn. Astron. 46, 187–204 (1989)CrossRefADSGoogle Scholar
  6. Davies M.E., Abalakin V.K., Brahic A., Bursa M., Chovitz B.H., Lieske J.H., Seidelmann P.K., Sinclair A.T., Tiuflin I.S.: Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites—1991. Celest. Mech. Dyn. Astron. 53, 377–397 (1992)CrossRefADSGoogle Scholar
  7. Davies M.E., Abalakin V.K., Bursa M., Lieske J.H., Morando B., Morrison D., Seidelmann P.K., Sinclair A.T., Yallop B., Tjuflin Y.S.: Report of the iau/iag/cospar working group on cartographic coordinates and rotational elements of the planets and satellites: 1994. Celest. Mech. Dyn. Astron. 63, 127–148 (1996)ADSGoogle Scholar
  8. Dufey J., Lemaître A., Rambaux N.: Planetary perturbations on Mercury’s libration in longitude. Celest. Mech. Dyn. Astron. 101, 141–157 (2008)MATHCrossRefADSGoogle Scholar
  9. Goldreich P., Peale S.: Spin-orbit coupling in the solar system. Astron. J. 71, 425–438 (1966)CrossRefADSGoogle Scholar
  10. Holin I.V.: Izvestiya Vysshikh Uchebnykh Zavedenii. Radiofizika 31(5), 515–518 (1988)ADSGoogle Scholar
  11. Holin I.V.: Izvestiya Vysshikh Uchebnykh Zavedenii. Radiofizika 35(5), 433–439 (1992)ADSGoogle Scholar
  12. Margot J.L., Peale S.J., Jurgens R.F., Slade M.A., Holin I.V.: Large longitude libration of Mercury reveals a molten core. Science 316, 710–714 (2007)CrossRefADSGoogle Scholar
  13. Murray C.D., Dermott S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  14. Peale S.J.: The free precession and libration of Mercury. Icarus 178, 4–18 (2005)CrossRefADSGoogle Scholar
  15. Peale S.J.: The Rotational Dynamics of Mercury and the State of its Core. Mercury, University of Arizona Press, Tucson, AZ (1988)Google Scholar
  16. Peale S.J., Phillips R.J., Solomon S.C., Smith D.E., Zuber M.T.: A procedure for determining the nature of Mercury’s core. Meteorit. Planet. Sci. 37, 1269–1283 (2002)ADSCrossRefGoogle Scholar
  17. Peale S.J., Yseboodt M., Margot J.L.: Long-period forcing of Mercury’s libration in longitude. Icarus 187, 365–373 (2007)CrossRefADSGoogle Scholar
  18. Peale S.J., Margot J.L., Yseboodt M.: Resonant forcing of Mercury’s libration in longitude. Icarus 199, 1–8 (2009)CrossRefADSGoogle Scholar
  19. Robinson M.S., Davies M.E., Colvin T.R., Edwards K.: A revised control network for Mercury. J. Geophys. Res. 104, 30847 (1999)CrossRefADSGoogle Scholar
  20. Seidelmann P.K., Abalakin V.K., Bursa M., Davies M.E., de Bergh C., Lieske J.H., Oberst J., Simon J.L., Standish E.M., Stooke P., Thomas P.C.: Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites: 2000. Celest. Mech. Dyn. Astron. 82, 83–111 (2002)CrossRefADSGoogle Scholar
  21. Seidelmann P.K., Archinal B.A., A’Hearn M.F., Cruikshank D.P., Hilton J.L., Keller H.U., Oberst J., Simon J.L., Stooke P., Tholen D.J., Thomas P.C.: Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements: 2003. Celest. Mech. Dyn. Astron. 91, 203–215 (2005)CrossRefADSGoogle Scholar
  22. Seidelmann P.K., Archinal B.A., A’Hearn M.F., Conrad A., Consolmagno G.J., Hestroffer D., Hilton J.L., Krasinsky G.A., Neumann G., Oberst J., Stooke P., Tedesco E.F., Tholen D.J., Thomas P.C., Williams I.P.: Report of the IAU/IAG working group on cartographic coordinates and rotational elements: 2006. Celest. Mech. Dyn. Astron. 98, 155–180 (2007)MATHCrossRefADSGoogle Scholar
  23. Standish, E.M.: Keplerian elements for approximate positions of the major planets. Technical Report, JPL Solar System Dynamics Group, http://ssd.jpl.nasa.gov/txt/aprx_pos_planets.pdf, undated
  24. Wisdom J., Peale S.J., Mignard F.: The chaotic rotation of Hyperion. Icarus 58, 137–152 (1984)CrossRefADSGoogle Scholar
  25. Yseboodt M., Margot J.L.: Evolution of Mercury’s obliquity. Icarus 181, 327–337 (2006)CrossRefADSGoogle Scholar
  26. Yseboodt, M., Margot, J.L., Peale, S.J.: Model of Mercury’s forced librations in longitude. Submitted (2009)Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Department of Earth & Space Sciences and Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations