Skip to main content
Log in

Modeling orbital relative motion to enable formation design from application requirements

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

While trajectory design for single satellite Earth observation missions is usually performed by means of analytical and relatively simple models of orbital dynamics including the main perturbations for the considered cases, most literature on formation flying dynamics is devoted to control issues rather than mission design. This work aims at bridging the gap between mission requirements and relative dynamics in multi-platform missions by means of an analytical model that describes relative motion for satellites moving on near circular low Earth orbits. The development is based on the orbital parameters approach and both the cases of close and large formations are taken into account. Secular Earth oblateness effects are included in the derivation. Modeling accuracy, when compared to a nonlinear model with two body and J2 forces, is shown to be of the order of 0.1% of relative coordinates for timescales of hundreds of orbits. An example of formation design is briefly described shaping a two-satellite formation on the basis of geometric requirements for synthetic aperture radar interferometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

Semi-major axis

e:

Eccentricity

i:

Inclination

r:

Satellite distance from Earth center

t:

Time

u:

Argument of latitude

x, y, z:

Hill’s reference frame of chief

x|, y|, z| :

Reference frame centered in the chief with axes parallel to x||, y||, z||

x||, y||, z|| :

Hill’s reference frame of the reference satellite

D:

Subscript identifying deputy parameters

M:

Mean anomaly

MCH :

Transformation matrix from the chief geocentric reference frame to the Hill’s reference frame

MDC :

Transformation matrix from the deputy geocentric reference frame to the chief geocentric reference frame

X, Y, Z:

Geocentric inertial reference frame

XC, YC, ZC :

Geocentric reference frame of the chief

XD, YD, ZD :

Geocentric reference frame of the deputy

α :

Rotation angle between x, y, z and x|, y|, z| around z ≡ z|

δ :

Variation of parameters between deputy and chief when the latter is on elliptical orbit

ν :

True anomaly

ω :

Argument of perigee

Δ:

Variation of parameters between deputy and chief when the latter is on circular orbit and between chief/deputy and the reference satellite when chief is on elliptical orbit

\({\vartheta}\) :

Radar viewing angle (off-nadir angle)

Ω:

Right ascension of the ascending node

References

  • Bamler R., Hartl P.: Synthetic aperture radar interferometry. Inverse Probl. 14, R1–R54 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Carter T.E.: State transition matrices for terminal Rendezvous studies: brief survey and new examples. AIAA J. Guid. Control Dyn. 21(1), 148–155 (1998)

    Article  MATH  Google Scholar 

  • Chobotov, V.A. (eds): Orbital Mechanics (3rd edn.). AIAA, Reston (2002)

    Google Scholar 

  • Clohessy W.H., Wiltshire R.S.: Terminal guidance for satellite rendezvous. J. Aerosp. Sci. 27, 653–658 (1960)

    Google Scholar 

  • Gens R., van Genderen J.L.: SAR interferometry-issues, techniques applications. Int. J. Remote Sens. 17, 1803–1835 (1996)

    Article  ADS  Google Scholar 

  • Gim D.-W., Alfriend K.T.: State transition matrix of relative motion for the perturbed noncircular reference. AIAA J. Guid. Control Dyn. 26(6), 956–971 (2003)

    Article  Google Scholar 

  • Gim D.-W., Alfriend K.T.: Satellite relative motion using differential equinoctial elements. Celest. Mech. Dyn. Astron. 92(4), 295–336 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Halsall M., Palmer P.L.: Modelling natural formations of LEO satellites. Celest. Mech. Dyn. Astron. 99(2), 105–127 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Hill G.W.: Researches in the Lunar theory. Am. J. Math. 1(1), 5–26 (1878)

    Article  Google Scholar 

  • Krieger G., Moreira A.: Spaceborne bi- and multistatic SAR: potential and challenges. IEE Proc. Radar Sonar Navig. 153(3), 184–198 (2006)

    Article  Google Scholar 

  • Lovell, T.A., Tragesser, S.G.: Guidance for relative motion of low earth orbit spacecraft based on relative orbit elements. AIAA Paper 2004-4988, AAS/AIAA astrodynamics specialist conference, Providence, RI, 16–19 Aug 2004

  • Moccia A., Fasano G.: Analysis of spaceborne tandem configurations for complementing COSMO with SAR interferometry. EURASIP J. Appl. Signal Process. 20, 3304–3315 (2005)

    Google Scholar 

  • Sabol C., Burns R., McLaughlin C.A.: Satellite formation flying design and evolution. AIAA J. Spacecr. Rockets 38(2), 270–278 (2001)

    Article  ADS  Google Scholar 

  • Schaub H.: Relative orbit geometry through classical orbit element differences. AIAA J. Guid. Control Dyn. 27(5), 839–848 (2004)

    Article  Google Scholar 

  • Schaub H., Alfriend K.T.: J2 invariant orbits for spacecraft formations. Celest. Mech. Dyn. Astron. 79, 77–95 (2001)

    Article  MATH  ADS  Google Scholar 

  • Schaub H., Vadali S.R., Alfriend K.T.: Spacecraft formation flying control using mean orbit elements. J. Astronaut. Sci. 48(1), 69–87 (2000)

    Google Scholar 

  • Schweighart S., Sedwick R.: High fidelity linearized J2 model for satellite formation flight. AIAA J. Guid. Control Dyn. 25(6), 1073–1080 (2002)

    Article  Google Scholar 

  • Sengupta P., Vadali S.R., Alfriend K.T.: Second order state transition for relative motion near perturbed, elliptic orbits. Celest. Mech. Dyn. Astron. 97(2), 101–129 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Vadali, S.R., Alfriend, K.T., Vaddi, S.: Hill’s equations, mean orbit elements, and formation flying of satellites. The Richard H. Battin astrodynamics conference, College Station, TX, March 2000

  • Wiesel W.E.: Relative satellite motion about an oblate planet. AIAA J. Guid. Control Dyn. 25(4), 776–785 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarmine Fasano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fasano, G., D’Errico, M. Modeling orbital relative motion to enable formation design from application requirements. Celest Mech Dyn Astr 105, 113–139 (2009). https://doi.org/10.1007/s10569-009-9230-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-009-9230-5

Keywords

Navigation